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Congestion control (CC) is crucial for datacenter networks (DCNs), and CC frameworks are proposed to
enable users to easily deploy new algorithms tailored to diverse scenarios. The framework is desired to be
high-performance and generic: (i) allows CC to achieve high throughput and low latency. (ii) supports various
algorithms and congestion scenarios. However, prior works either suffer from performance limitations or
lack sufficient generality. CCP experiences throughput degradation under heavy traffic, while DOCA-PCC
improves performance using hardware but lacks support for detecting and mitigating host congestion.

In this paper, we present Taurus, a high-performance and generic CC framework through the hardware-
software co-design. To this end, Taurus partitions CC functions into distinct tasks and maps them onto suitable
hardware/software components while mitigating excessive interaction overhead. Specifically, Taurus designs a
collaborative signal collection mechanism to support diverse congestion feedback, a type-aware message report
engine to reduce communication overhead, and software built-in handlers to facilitate deployments. We have
implemented a fully functional Taurus on commodity servers with FPGA-based NICs. Experimental results
show that Taurus supports various CC algorithms in achieving their near-native performance. Compared to
CCP, Taurus improves throughput by 32.3%, reduces latency by 96.4%, and lowers CPU overhead by 158.7%.
Compared to DOCA-PCC, Taurus improves throughput by 9.3% and reduces latency by 28.8%.
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1 Introduction
Congestion control (CC) is the key in datacenter networks (DCNs) to ensure ultra-low latency
and high throughput for applications, such as LLMs [30, 53] and graph analysis [13, 39]. Modern
datacenters have proposed numerous CC algorithms [5, 9, 33, 36, 40, 78] tailored to different
networks. Unfortunately, deploying newCC algorithms at a large scale is typically challenging due to
their tight integration into the transport datapath (e.g., RDMA [62], TCP [12], etc.). Modifications can
be laborious, as they need to carefully consider datapath resources [69], security [7], performance
constraints [52], and even require NIC architecture adjustment [9, 36] (see §2.1).

Therefore, there is a growing interest in both academia and industry in programmable CC frame-
works [15, 52]. These frameworks decouple CC decisions from traditional datapaths, enabling users
to easily deploy customized algorithms through a set of interfaces. Generally, users expect the frame-
work to be high-performance and generic: (i) allows CC to achieve exceptional performance (e.g.,
link-speed throughput and 𝜇𝑠-level latency), comparable to in-datapath deployments; (ii) supports
diverse CC algorithms (a.k.a. algorithm-wise generality) and handles various congestion scenarios
(a.k.a. congestion-wise generality), including host congestion [2] and fabric congestion [33].

Prior works, such as CCP [52] and DOCA-PCC [15], have started to support multiple CC algo-
rithms, but they either suffer from performance issues or lack sufficient generality. Specifically,
CCP utilizes host CPUs to build separate agents outside of the software datapaths, which facili-
tate sophisticated CC algorithms [16, 72, 74]. However, escalating traffic (e.g., up to 400Gbps) can
exceed its processing capabilities, leading to performance degradation and increased overhead
(§2.3). To address this issue, DOCA-PCC offloads congestion signal extraction and decision-making
to programmable hardware (i.e., BlueField [18]), which significantly speeds up the response time.
Nonetheless, it falls short in dealing with host congestion, which widely impacts modern datacenter
clusters [2, 3, 33, 35, 65]. Host congestion occurs between CPUs and peripherals due to host resource
contention (e.g., memory[35], PCIe bandwidth [2, 3], etc.). However, DOCA-PCC offloads signal
collection to external hardware and mainly provides feedback from the fabric and NIC, which limits
its ability to pinpoint the location and severity of host congestion. Moreover, DOCA-PCC merely
adjusts the sending rate to the fabric and lacks support to regulate host resources to fundamentally
resolve host congestion (§2.3).
Thus, we ask: is it possible to design a high-performance and generic CC framework for DCNs?

To answer this question, we notice that achieving high performance favors hardware assistance
to handle heavy traffic loads while ensuring generality requires host software involvement to
accommodate different CC algorithms and congestion scenarios.
In this paper, we thus present Taurus, a hardware-software co-design CC framework to

balance performance and generality requirements. To achieve this, we first propose a basic design
principle that partitions CC functions into distinct tasks, and maps them onto suitable hardware/-
software components, while mitigating excessive communication overhead (§3.1). Guided by this
principle, we systematically analyze the conceptual model of CC in modern DCNs and categorize
its tasks based on their performance and flexibility demands. The performance-critical tasks (e.g.,
signal collection and delivery adjustment) are offloaded to the hardware to guarantee the datapath
performance, whereas tasks requiring flexibility (e.g., decision-making and custom feedback) are
handled in software (§3.2).
To enable algorithm-wise and congestion-wise generality, Taurus designs a collaborative signal

collection mechanism (§3.3). Our key insight is to harness the hardware’s ability to do best-effort
signal extraction, while leaving fine-grained signal analysis to software. Specifically, the hardware
extracts predefined signals widely used in existing CC algorithms, along with feedback segments that
contain new user-defined signals; The software further parses custom signals from feedback segments
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and provides interfaces to collect host signals. To ensure high performance, Taurus designs a type-
aware message report engine with a two-tier aggregation mechanism to reduce the communication
overhead between hardware and software (§3.4). Furthermore, Taurus develops a built-in message
handler to deal with exceptional reports, an algorithm handler to dispatch different feedback events
to corresponding algorithms and filter out non-essential updates, thus facilitating the algorithm
deployment (§3.5). We have implemented a fully functional Taurus based on commodity servers
with FPGA-based NICs and deployed it into DCNs at 400Gbps link speeds (§4). We evaluate Taurus
on both testbeds and large-scale simulations with the real-world workloads (§5). The results show
that Taurus supports a variety of CC algorithms and congestion scenarios, achieving near-native
performance comparable to in-datapath CC deployments. Compared to CCP, Taurus improves
throughput by 32.3%, reduces latency by 96.4%, and lowers CPU overhead by 158.7%. Compared to
DOCA-PCC, Taurus improves throughput by 9.3% and reduces latency by 28.8%.

Design Space

Fixed CC Algorithm Programmable CC
Framework

CCP DOCA PCC

(e.g., DCQCN, HPCC, Swift, etc.)
Lack of flexibility

(Software) (Programmable Hardware)

Performance-limited,
high CPU overhead

High-performance,
but lack generality for

host congestion

Taurus
(HW-SW co-design)

High-performance
and generic

Fig. 1. Design space of congestion control for datacenter networks and the position of Taurus.

Figure 1 summarizes the design space of CC for DCNs and highlights the position of Taurus.
Compared to the other solutions, Taurus provides a generic and high-performance CC framework
with hardware-software co-design. Our primary contributions are as follows:
• We experimentally analyze the limitations of previous works (§2.3) and present Taurus, a
hardware-software co-design architecture to achieve both generality and performance for CC
frameworks (§3.1 & §3.2).

• We propose an innovative collaborative signal collection mechanism to support diverse CC
feedbacks (§3.3), a type-aware message report engine with a two-tier aggregation to reduce
communication overhead (§3.4), and software built-in handlers to simplify CC deployment (§3.5).

• We implement a fully functional Taurus and deploy it into DCNs. Experiments with real-world
workloads demonstrate its ability to achieve generality and high performance compared to other
CC frameworks (§4 & §5).

2 Background and Motivation
2.1 The Needs for CC Frameworks
2.1.1 Keeping a Fixed CC Algorithm is Not Enough. Modern datacenter providers have proposed
various CC algorithms [5, 9, 33, 36, 50, 78] in their DCNs. However, it is challenging to keep a fixed
CC algorithm that consistently maintains high performance across all environments:
Distinct application scenarios. Different application scenarios exhibit distinct congestion sensi-
tivities, traffic characteristics and workload patterns. For AI training on Dragonfly topologies [1],
switches are organized into all-to-all groups, with intra-group flows traversing a single hop while
inter-group paths may quickly become congested without adaptive routing [71]. In contrast, public
services deployed on Clos networks [4] feature multiple equivalent paths with longer hop counts.
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Therefore, CC should adjust its assumptions for distinct topologies. For traffic patterns, storage
workloads generate more elephant flows [48], whereas RPC workloads [32] exhibit more mice
flows. Thus, CC requires distinct strategies and parameters to suit varied scenarios.
(ii) Evolving Datacenter Networks. The datacenter network remains unremitting evolution. First,
the increasing BDP allows more transfers to be completed quickly. As reported in [9], approximately
80% of RPCs can be completed in just one RTT. Thus, CC needs to increase regulation speed
(e.g., from RTT level to sub-RTT level). Second, network devices are iterating with advanced
functionalities (e.g., INT [24], packet trimming [56], etc.). Thus, it provides more opportunities
for CC algorithms to improve their precision and convergence speed. Last, the escalating link
bandwidth and relatively stagnant inter-host resources cause emerging host congestion [2, 3],
necessitating accurate differentiation between the fabric and host congestion. Thus, CCs must be
constantly updated to keep pace with the evolving DCNs.

2.1.2 Deploying New CC Algorithms is Complex. Deploying new CC algorithms at a large scale is
typically complex as they are usually integrated into the datapath alongside the corresponding
transport protocol stacks [22, 29, 44], necessitating laborious modification efforts as follows:
(i) Transport-specific Adaptations. CC algorithms require adaptations to meet the performance,
security, and resource needs of the integrated transport. For hardware transports like RDMA [22], the
designmust consider hardware resource constraints (e.g., connection scalability [69]), computational
optimizations (e.g., pipelined sorting[70]) and large-scale deployment (e.g., avoiding deadlocks[45]).
For software transports like kernel TCP [12], CC algorithms need to exclude the vulnerable points
such as infinite loops and memory out-of-bounds access [7] to ensure kernel security and eliminate
the time-consuming computation to meet stringent performance constraints [52].
(ii) Hardware Adjustments. Some algorithms depend on new hardware features and require
hardware adjustments. For example, HPCC [36] mandates the incorporation of INT parsing and
computation into RDMA NICs, whereas Bolt [9] relies on switch-initiated SRC feedback and
modifies reactions. Some credit-based algorithms [14, 23, 51, 56] require the receiver to allocate
credit. The ASIC NIC architecture architectures (e.g., RNIC) typically evolve slowly compared with
software stacks through iterative updates.
Hence, recent studies [15, 52] have been devoted to providing programmable CC frameworks

with essential abstractions that help users to deploy custom-defined algorithms.

2.2 Desired Properties of CC Frameworks
Users desire a high-performance and generic CC framework:
(i) High-performance. The framework should be able to allow CC to achieve native performance
comparable to in-datapath deployments. In hyper-speed DCNs (e.g., 400 Gbps link speed), queue
buildup can introduce tail latency on the order of tens of microseconds [9], and low link utilization
can result in significantly increased flow completion times [36]. Therefore, the framework must
ensure an accurate response to the congestion without introducing processing bottlenecks.
(ii) Generic. The framework needs to support diverse CC algorithms and congestion scenarios.
On the one hand, the framework should accommodate different design trade-offs, including the
congestion signal (e.g., ECN [5], RTT [50], INT [24], etc.), decision period (e.g., per-ack [36], per-
RTT [5], etc.) and reactionmode (e.g., window [33], rate [78], etc.). On the other hand, the framework
should enable CC algorithms to handle different congestion scenarios, including host congestion [2]
and fabric congestion [33].
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Fig. 2. CCP has performance issues while DOCA-PCC lack generality for handling host congestion.

2.3 Existing Works & Limitations
Here, we introduce the primary architectures of existing works and analyze their performance and
generality limitations.
CCP[52]. CCP leverages host CPUs to guarantee utmost programmability. It deploys an inde-
pendent agent running in the user space to facilitate sophisticated CC algorithms (e.g., Bayesian
forecasts [72], online learning [16, 74], etc.). However, escalating traffic loads can exceed the agent’s
processing capacity, resulting in throughput degradation and overhead increases. Specifically, we
deploy CCP on commodity servers equipped with Mellanox CX7 NICs operating at 400 Gbps links,
and compare the throughput and CPU overhead when running the same CC algorithm in CCP
and the native datapath (i.e., kernel TCP). Experimental results are illustrated in Figure 2a and 2b.
Compared to in-datapath deployment, CCP experiences throughput degradation ranging from 38%
to 51% and introduces CPU overheads ranging from 86% to 198%. By analyzing the agent logs, we
discover that the total throughput rises as concurrent flow increases. The escalating traffic loads
lead to considerable CC event reports and frequent event drops, which compromise the speed and
accuracy of congestion response.
DOCA-PCC[15]. DOCA-PCC employs programmable hardware (e.g., BlueField [18]) to achieve
flexibility while ensuring high performance. It offloads signal collection to the hardware (e.g.,
DPA [17]) and performs decisions on the SoC. Although DOCA-PCC enhances CC response speeds,
it falls short in addressing emerging host congestion in modern DCNs [2, 65]. On the one hand,
diverse host signals [2, 3, 33] are required to locate different congestion locations and severity
within hosts. However, DOCA-PCC offloads its signal collection into external hardware and only
provides fabric and NIC signals. On the other hand, host congestion occurs between the CPU and
peripherals, requiring the CPU to handle resource competition to mitigate congestion. In contrast,
DOCA-PCC completely offloads decision-making to the SoC, which hinders the resolution of
congestion issues at its core. As a demonstration, we deploy DOCA-PCC on BlueField-3 DPUs
with its provided CC algorithm and evaluate its performance under different congestion scenarios.
Similar to prior studies [3, 35], we employ the incast traffic representing network congestion and
CPU-to-memory traffic representing host congestion (see §5.1 for detailed settings). Test results are
shown in Figure 2c and 2d. Compared to fabric congestion scenarios, DOCA-PCC exhibits a 5.8%
to 15.2% reduction in throughput and a 12.2% to 42.4% increase in latency under host congestion.
Simply adjusting the sending rate to the network fails to address the root causes of host congestion,
ultimately impairing overall performance.
Table 1 summarizes the focal points of existing works. Since they are unable to achieve both

high performance and generality, we turn to designing a comprehensive solution.
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Table 1. Existing works and their focal points. CCP relies on host software for signal collection and decision,

suffering from performance degradation and significant CPU overhead. DOCA-PCC fully offloads CC tasks

to external hardware, yet neglecting the detection and resolution of host congestion.

Existing

Framework

Signal

Collection

Provided

Signal

Decision

Mode

CCP[52] Software-only Fabric CPU-hosted
DOCA-PCC[15] Hardware-only Fabric & NIC SoC-hosted

3 Taurus Design
We first introduce the design rationale based on the framework’s desired properties (§3.1). Next,
we present the architecture of the hardware-software co-design framework (§3.2), discussing the
primary challenges and our solutions (§3.3 - §3.5).

3.1 Design Rationale & Challenges
Taurus aims to provide a high-performance and generic CC framework for DCNs. As discussed
and experimented in §2.3, we find that achieving high performance favors hardware assistance to
handle heavy traffic workloads, while ensuring generality requires host software involvement to
identify and address different congestion scenarios.

RP/CP/NP NP/CP RP/NP/CP
1 1CC

Sender ReceiverSwitch

CC

1

34 2

Data Flow

Feedback Flow

Decision-making

Feed
back

Adjust
ment

CC Tasks

RP: Reaction Point
CP: Congestion Point
NP: Notification Point

SW Part
HW&SW Part

HW Part

Fig. 3. The conceptual model of congestion control in modern DCNs and its expectations for task partitions.

To achieve the above goal, we partition CC functions into distinct tasks and map them onto
suitable hardware/software components, while mitigating excessive communication overhead.
We first construct a conceptual CC model widely employed in DCNs to describe CC tasks [5, 78].
Next, we analyze CC tasks in terms of their performance and flexibility requirements to determine
the proper hardware/software mappings. As depicted in Figure 3, the sender injects packets into
networks, the switch forwards packets, and the receiver generates feedback notifications. For the
host side, the CC typically comprises three main tasks [15, 52] as follows:
• Feedback Task. The task involves generating and processing feedback notifications, which
requires both flexibility and high performance. On the one hand, algorithms can have various
feedback mechanisms, including ACK-based feedback (➊), switch-initiated feedback (➋), in-
formation from transmitted messages (➌), and timing-based feedback (➍). On the other hand,
extracting congestion signals from high-speed datapaths (e.g., 100 - 400Gbps link speeds [32])
requires a high processing capability (100+ Mpps).

• Decision-making Task. This task entails judging congestion and reacting accordingly, which is
a focal point of CC flexibility. Firstly, different CC algorithms usually employ distinct judgment
strategies, such as the switch queue length [5], RTT variation [50], link utilization [36], host
IIO occupancy [3], etc. Secondly, the parameter setting and reaction mechanism of CC can vary
depending on the application scenario (as discussed in §2.1). For performance concerns, previous
large-scale CC deployments in DCNs [5, 9, 33] have demonstrated that the host CPU is sufficient
for promptly carrying out CC decisions.
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• Adjustment Task. This task determines the data path’s delivery behavior in the next cycle,
requiring it to be high-performance. For example, as mentioned in [70], RNICs can achieve speeds
of up to 110 Mpps, and the rate-limiting adjustment needs to be quick enough to transmit a
packet every 8 ns. Thus, the adjustment needs to be fast. In contrast, adjustment modes are
typically fixed, such as the window-based [5] and the rate-based [78] scheme.
Therefore, we map these CC tasks to suitable devices, as shown on the right of Figure 3. The

decision-making task is delegated to software, the adjustment task is partitioned to hardware, and
the feedback task is collectively handled by both software and hardware. Under this architecture,
the following three key design challenges should be addressed:
• Challenges#1: Diverse Congestion Signals. As discussed above, CC algorithms rely on
different feedback signals that differ in type, source, and generation frequency, and may evolve
over time as network conditions change. This diversity necessitates a feedback mechanism that
is both flexible and extensible.

• Challenges#2: Frequent Interaction Overhead. The decoupled architecture introduces pro-
cessing overhead during the exchange of feedback signals and decisions (see §3.4 for quantitative
analysis). Therefore, an efficient interaction mechanism is required to minimize overheads.

• Challenges#3: Seamless Algorithm Integration. Users expect to deploy custom algorithms
as easily as traditional software, without needing to manage signal conflicts, message overflows,
or other runtime exceptions.

3.2 Framework Overview
To address the aforementioned challenges, we design Taurus, a high-performance and generic CC
framework. As depicted in Figure 4, the framework consists of two primary components:

Message Report Engine

Hardware

Software

Signal Collection (HW)

Driver

RX Pipeline TX Pipeline

CC
Context

Message Handler

Agent

Signal Collection (SW)

Mgmt.

Algorithms
Algorithm

Handler

Fig. 4. Taurus architecture overview: Hardware collects congestion signals and reports them as structured

messages; software interprets messages and host signals into CC events for algorithm execution.

(i) Hardware Part. The hardware part is responsible for extracting congestion signals and reporting
messages to the software. To support diverse congestion signals, Taurus proposes a collaborative
signal collection mechanism (§3.3). The hardware part tries its best to extract predefined congestion
signals and custom feedback segments from the RX and TX pipeline, leaving the fine-grained
collection of custom and host signals to the software. To reduce communication overhead due
to frequent signal reporting, Taurus designs a type-aware message report engine that performs
two-tier aggregation for native signals (§3.4), generating different messages to the software.
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(ii) Software Part. The software part includes a driver for managing message reporting and an
agent for deploying algorithms (§3.5). First, the message handler fetches messages and manages
exceptions such as overflows and conflicts. Subsequently, messages are sent to the software signal
collection module, where custom and host signals are collected together. Next, the algorithm handler
generates distinct events to notify the corresponding algorithms. After CC decisions are made,
the algorithm handler checks results and removes constants or out-of-range values to prevent
unnecessary updates to the hardware.
Feasibility Discussion. The separate pattern intuitively raises concerns about the effectiveness
of CC. From a practical standpoint, the separation indeed delays feedback, whereas the introduced
latency between hardware and software is relatively minor (e.g., 1us PCIe latency) compared to the
overall end-to-end delay, especially in congested scenarios (tens of microseconds [5, 78]). We will
provide quantitative validation through practical experiments (§5).

3.3 Collaborative Signal Collection
This component aims to extract congestion signals from the feedback. To reduce the burden of
software extraction while allowing customized and host signal collection, we introduce a collabora-
tive collection mechanism. The core idea is to harness the hardware’s ability for best-effort signal
extraction while leaving fine-grained signal analysis to the software.

In detail, the signal collectionmodule categorizes congestion signals into three types: (i) predefined
signals that are widely used (e.g., ECE, ACK, etc.); (ii) custom signals defined by users (e.g., INT,
credit, etc.); (iii) host signals reflecting host network status (e.g., IIO occupancy, etc.). Accordingly,
hardware is used to obtain predefined signals and feedback segments containing custom signals;
while software is used to obtain specific custom signals and host signals. Figure 5 illustrates the
collaborative signal collection overview, which consists of two parts:

Signal Collection (HW)

RX Pipeline TX Pipeline

CC
Context

Data-driven
StatefulStateless

Time-driven
StatelessStateful

CNPECE

Custom ···

Pkts

OOO

Bytes

··· Timeout

Period Timestamp

··· ··· ···

Message Report Engine

CC
Context

Signal Collection (SW)

Dispatcher

Messages

INT ··· ECE Delay

Custom Predefined Host
···

<layer, offset, size>

IIO

stand-alone

···

Fig. 5. Collaborative signal collection, where the hardware part tries its best to extract signals, while the

software part further obtains custom and host signals.

Signal collection in hardware. The hardware collection module provides two signal extraction
approaches based on their triggering modes: data-driven and time-driven.
• Data-driven. These signals originate from the received packets from the RX pipeline and data sent
to the TX pipeline. Modules along the pipeline are interconnected with the collection module to
provide metadata or the entire payloads. For stateless signals, such as ECE [5] and CNP [78],
Taurus directly forwards them to the message report module. For stateful signals (e.g., out-of-
order), Taurus stores them in the CC context with the corresponding flow IDs to determine the
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actual state. In particular, users can define custom signals beyond the standard protocols, making
it challenging for hardware to extract them flexibly. Therefore, Taurus provides a selective
extraction method. The software issues configurations to enable hardware to extract specific
segments from the given location, avoiding directly sending the entire feedback payload to
the software. Afterward, the extracted segments are transmitted to the software for further
fine-grained parsing.

• Time-driven. These signals are triggered by hardware timers, providing different feedback
schemes. Taurus supports stateless (e.g., timestamps [50]) and stateful signal (e.g., timeouts [33]
and periods [78]) collection. To prevent conflicts when accessing CC contexts simultaneously
with data-driven signals, Taurus keeps the CC contexts of the two independent from each other.
Taurus provides a proactive signal collection function that sends probing packets to obtain link
delays as required by some algorithms [42, 43]. Currently, Taurus provides two methods: one
is to attach the probe request into the transmit data payload at fixed intervals of N packets or
T time units; the other is to immediately generate independent probe packets upon receiving
software-initiated commands. The probe field consists of 8 bytes, including the mode to indicate
packet type, a timestamp for the record, and a probe sequence number to avoid time reversal.

Signal collection in software. The signals collected by the hardware are fed into the message
reporting engine (§3.4) where they are turned into messages along with signal types and arrival
timestamps. Messages are sent to the software and dispatched to different collection modules based
on the signal types. Pre-defined signals can be directly obtained without additional operations since
they have already been extracted by the hardware. Custom signals need to be parsed from the
feedback segment based on the user-defined structures (e.g., INT[24], credit [56]). Host signals are
collected in two distinct ways: a portion of host signals are embedded into the remote feedback
packets (e.g., remote endpoint delay [33]), while the other is independently sampled from the
local host (e.g., IIO occupancy [3]). For the former, Taurus extracts signals from the feedback data
segments using the same approach as custom signals. For the latter, Taurus presents a stand-alone
signal sampling method. In detail, Taurus modularizes the sampling functions and dynamically
adds new functions based on algorithm needs. Each sampling function can be added and called
independently. For example, the MSR sampling [25] is added to obtain the IIO occupancy and PCIe
bandwidth to pinpoint the severity of host congestion. VTune Profiler [27] is used to obtain the
host CPU utilization to identify the thread activity of applications.

3.4 Type-aware Message Report Engine
Compared to in-datapath CC deployment [12, 78], the framework introduces additional communi-
cation between the hardware and software. This raises two critical issues: (i) Per-packet/interval
feedback can consume considerable shared host resources (e.g., PCIe bandwidth), resulting in
excessive communication overheads. (ii) Small-sized feedback signals (e.g., 1-bit ECN) reduce
communication efficiency. Specifically, the theoretical bandwidth consumption (𝐵𝑊 ) and commu-
nication efficiency (𝐸) for the feedback (𝑓𝑖 ) can be formulated as follows:

𝐵𝑊 =
∑︁
𝑓𝑖

(𝐹 (𝑓𝑖 ) × 𝑆 (𝑓𝑖 )) (1)

𝐸 = 𝐴𝑣𝑔(
∑︁
𝑓𝑖

(𝑆 (𝑓𝑖 )/(𝑆 (𝑓𝑖 ) + 𝑆 (𝐻 )))) (2)

Where 𝑓𝑖 refers to the index of feedback, 𝐹 (𝑓𝑖 ) denotes the feedback frequency, 𝑆 (𝑓𝑖 ) indicates
feedback data size, and 𝑆 (𝐻 ) signifies extra packet header size in transmissions.
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In Equation 1, the value of 𝐹 (𝑓𝑖 ) varies depending on the type of feedback. For time-driven
signals, 𝐹 (𝑓𝑖 ) is inversely proportional to the signal generation period, which is typically in the
microsecond range (e.g., RTT [50], TX intervals [78], etc.). Thus, 𝐹 (𝑓𝑖 ) typically ranges from 100𝑠
Krps to 1𝑠 Mrps. For data-driven signals, 𝐹 (𝑓𝑖 ) is related to the frequency of data sending or feedback
reception. In the case of the typical ACK feedback, 𝐹 (𝑓𝑖 ) can reach up to 12.5-50 Mrps at a link rate
of 400Gbps with 4K/1K MTUs. Consequently, such a high feedback rate consumes substantial PCIe
bandwidth and burdens the host processing. In Equation 2, the 𝐸 depends on the ratio between
feedback size 𝑆 (𝑓 ) and the header size 𝑆 (𝐻 ) in PCIe transmission (e.g., 4DW TLP header [63]).
Thus, for small-sized feedback signals (e.g., 1-bit ECN flag), the headers occupy a significant portion
of the transmission bandwidth, leading to reduced communication efficiency in practice.

To address these concerns, Taurus presents a type-aware message report engine. As depicted in
Figure 6, it employs a two-tier aggregation mechanism to reduce communication overhead:

Tier-1 Signal-level aggregation

Queue-driven
Deadline-driven

Raw
Accum
ulable

Coales
cent

Message Generator

Type Identifier

Signals

Messages

Message
Report Engine

Aggregated
Signals

Tier-2 Message-level aggregation

Tier-1 Signal-level aggregation
Aggregating

Signals

DMA Queues

Ping-pong

Ping-pong

Fig. 6. Type-aware message report engine. Taurus aggregates different types of signals and messages to

reduce communication overhead and improve efficiency.

Signal-level Aggregation. The purpose of this aggregation is to reduce the frequency of feedback
reporting, 𝐹 (𝑓𝑖 ). In detail, the signals are sent to three independent processing engines based on
their aggregated capabilities: Accumulable, Coalescent, and Raw. The Accumulable engine sums up
the input signals to calculate the total quantity, such as the amount of received ACK and ECE [5],
and the number of bytes and packets sent [78]. The Coalescent engine merges multiple signals
over a period of time, such as out-of-order and packet loss signals [5]. Since these signals often
recur before adjustment takes effect during congestion, signal coalescence can avoid over-control.
The Raw engine allows direct forwarding of non-aggregated signals and custom signals. Each
aggregation engine has an independent aggregation period, configured by algorithms. All signals
are then sent to the message generator. Taurus designs a ping-pong buffer [31] to separate signals
currently being aggregated from those that have been aggregated to avoid read/write conflict.
Message-level Aggregation. This module aims to improve communication efficiency 𝐸 by
increasing the feedback size per transmission. Specifically, Taurus introduces two mechanisms
for message aggregation: queue-driven and deadline-driven. Messages pushed into the DMA queue
are not sent immediately. They are reported to the software in batches only when the cumulative
queue length surpasses the queue threshold. Generally, a shallow queue depth is often sufficient to
achieve high efficiency for this queue (e.g., 128∼512B [63]). However, messages may experience
long waiting times when lacking enough feedback in some cases. To guarantee timely reporting, the
deadline-driven mechanism initiates message reporting if the queuing times exceed the deadline.
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Fig. 7. The diagram of the communication between hardware and software, along with the software handler.

3.5 Software Built-in Handler
Taurus employs the ring buffer queues [58, 73] for communication, as illustrated in Figure 7. In the
data plane, tens of thousands of queues are deployed and scheduled [69] to fulfill the requirements
of isolation [67] and QoS [33] for applications. In the control plane, maintaining numerous control
queues for CC is unnecessary, as it aims to achieve fairness for each flow [33]. Hence, Taurus
constructs message-based control queues instead of per-flow queues to reduce scheduling overhead.

To facilitate algorithm deployment, Taurus provides software handlers to address three practical
issues. First, the message handler copes with exceptional reporting, such as message overflows and
conflicts. Secondly, the algorithm handler provides only the subset of the signal that algorithms
truly require, rather than all feedback. Additionally, it removes the non-essential updates that fall
outside reasonable ranges or unchanged values.
Message Handler. This component is responsible for managing exception reports. On the one
hand, when the software processing rate falls behind the hardware reporting rate due to jitters
[33], new messages may overwrite unfetched messages due to the ring buffer overflow. To address
this issue, Taurus utilizes the back-pressure approach to decrease the reporting rate by proactively
increasing the aggregation period in the message report engine. For unmergeable signals, one
practical strategy is to evict older entries in the ring buffer to accommodate new signals. Future
work may explore more fine-grained approaches, such as selective eviction policies. On the other
hand, the order of message receiving in software may differ from the order of feedback arrivals in
hardware due to aggregations. To preserve temporal information, Taurus records the initial arrival
time of aggregated signals in the hardware and the message reporting timestamps in the software
to determine the chronological order of signal occurrences and avoid erroneous judgments.
Algorithm Handler. The agent receives messages through the memory mapping approach
and generates feedback events to CC algorithms. Given that algorithms only require a subset of
signals for decision-making, Taurus provides interfaces for users to bind their algorithms with the
required feedback events (§4.2). Therefore, users do not have to deal with unnecessary feedback
signals. Furthermore, Taurus incorporates the update filter to mitigate unnecessary updates to the
hardware. Currently, Taurus provides two filters: boundary filter and duplicate value filter. The
boundary filter limits the decision results within the boundaries of data transfer capabilities (e.g.,
100 Kbps to 400Gbps). The duplicate value filter intercepts updates if results remain consistent
with previous values. The hardware maintains the previous decisions in the absence of updates.

4 Implementation
We have implemented a fully functional Taurus with FPGA-based NICs on commodity servers and
deployed it into DCNs operating at 400Gbps link speeds.
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4.1 Hardware Integration
We use the FPGA-based NIC as a prototype to validate the feasibility of Taurus. Specifically, we
select a custom FPGA board with Intel® Agilex™ chips [11], equipped with a 400G QSFP port and
a PCIe Gen5x16 interface. We implement both basic NIC functions and the in-house designed
RDMA transport to represent high-performance datapaths.
CC Module. We implement the hardware logic described in §3 using System Verilog. The opera-
tional clock frequency is configured at 300 MHz. The CC module consumes 1.9% of ALMs, 1.43%
of Registers, 1.27% of M2Ks, and 0.78% of BRAMs. The resource overhead is minimal, with the
majority of the storage resource utilization stemming from the CC context.
Other NIC Modules. The CC module interconnects with modules on the NIC’s RX and TX
pipelines to obtain metadata or packet payloads from them. In our implementation, the CC module
gains signals from L3-L4 network modules (e.g., IP, RDMA, etc.). Additionally, the CC adjustment
should be timely and scalable. Apart from the typical window-based control mode, Taurus realizes
a fast and accurate rate limiter based on a timing wheel with the𝑊𝐹 2𝑄+ algorithm [10] that
supports 10K+ flows to regulate their rates.

4.2 CC Algorithm Deployment
We develop the CC agent using the C++ language. It runs in the user space to uniformly manage
CC executions. Users can easily deploy CC algorithms using Taurus’s APIs (detailed APIs and
examples in the §A). Specifically, implementing a CC algorithm using Taurus involves four stages:

(1) CC Initialization. Users allocate memory for CC contexts, initialize parameters, and configure
states based on their deployment scenarios (slow start or maximum rate start).

(2) Event Binding. Users bind the desired CC events from all feedback events as inputs to their
custom decision logic.

(3) Decision Execution. The CC algorithm evaluates the congestion status and executes appro-
priate reaction strategies. For instance, the algorithm can adjust the sending rate to the fabric
to avoid network congestion [5, 78] or invoke host resource management tools (e.g., MBA [61],
Memory QoS [6], etc.) to deal with resource contention and mitigate host congestion.

(4) Result Update. After making CC decisions, users write the results back to the hardware CC
context for use in the next adjustment cycle.

5 Evaluation
In this section, we conduct testbed experiments along with large-scale NS3 simulations to evaluate
Taurus’s performance by answering the following questions:

1. Are the component designs of Taurus effective?We employ a series of micro-benchmarks
to demonstrate that Taurus can alleviate communication overhead by 14.2% to 95.9% and CPU
overhead by 23.5% to 58.1%(§5.2).

2. Can Taurus provide a high performance and generality CC framework? We evaluate
the system performance with representative CC algorithms and distinct congestion scenarios,
demonstrating that Taurus can uphold high performance across diverse metrics (§5.3).
3. How does Taurus compare against related frameworks? We compare Taurus with

software CCP and hardware DOCA-PCC, showing that Taurus improves throughput by 32.3%,
reduces latency by 96.4% and lowers CPU overhead by 158.7%, compared to CCP. In comparison
with DOCA-PCC, Taurus improves throughput by 9.3% and reduces latency by 28.8% (§5.4).
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5.1 Evaluation Setup

Network Topologies. We set up the testbed and large-scale NS3 simulation [55] to evaluate
Taurus. The testbed represents the typical DCN pod, comprising two Agg switches and two ToR
switches. Each ToR is connected to eight servers. The base RTT between ToR switches is 5𝜇𝑠
and 8𝜇𝑠 across racks. The MTU is configured to 4K. A server is equipped with two FPGAs and
BlueField-3 B3140H DPUs, two 8-core Intel® Xeon® 8457C CPUs and 512GB of memory.
The NS3 simulation topology is based on a typical 3-layer FatTree [4], comprising 16 Core

switches, 20 Aggregation switches, and 20 ToRs switches, without over-subscription. 320 servers
are evenly located under ToRs. Each link is 400 Gbps and the propagation latency is set to 1𝜇𝑠 . All
switches support PFC and set 32MB shared buffer. We supplement the PCIe access model described
in [54] into the simulation to mimic the Taurus separation architecture.
Traffic Patterns. We evaluate Taurus using two realistic datacenter workload patterns, Web-
search [78] and Hadoop [59], for end-to-end FCT. In addition, we use synthetic flows based on prior
industry work as micro-benchmarks. To evaluate performance under different congestion scenarios,
we generate incast traffic by deploying multiple senders to a single receiver (i.e., 8:1), following
prior work [5, 36], and employ MLC [26] to produce CPU-to-memory traffic to represent the local
memory-intensive applications indicating host congestion [3]. This traffic is used for comparing
different frameworks. Tool details can be found in the appendix.
CCAlgorithms and Frameworks. We select a wide range of CC algorithms that have been widely
deployed at scale in DCNs for evaluation, including DCTCP [5], Swift [33], HPCC [36], and Bolt [9].
These algorithms exhibit distinct congestion signals and decision strategies, representing ECN-
based, delay-based, INT-based, and queue-based algorithms, respectively. We configure parameters
based on the algorithm recommendations. Their native in-datapath implementations are chosen as
the baseline1. For the CC framework, we compare Taurus with both CCP [52] and DOCA-PCC [15]
in terms of their performance and CPU overhead.

5.2 Micro-benchmarks
We use micro-benchmarks to evaluate the effectiveness of component designs in Taurus, including
the aggregation mechanism in hardware and the update filter in software handlers. We compare
the CPU and communication overhead with and without aggregation, as well as the result update
rate with and without update filtering.
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Fig. 8. Taurus reduces CPU overhead and message reporting rate in communication with the aggregation

and alleviates unnecessary update overhead with the update filter.

1Since Swift, HPCC, and Bolt are tightly integrated with proprietary transport datapaths, we compare them in the simulation
and deploy the internal DCTCP algorithm (denoted as iDCTCP) in the testbed. iDCTCP uses ECE, RTO, and OOO as
feedback with the same AIMD response mode as DCTCP.
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Taurus’s aggregation reduces the CPU and communication overhead. We measure the CPU
overhead and the message reporting rate during hardware-software communication under traffic
loads of 400 Gbps. The CPU overhead is quantified by CPU utilization, with the maximum value
depending on the total number of available CPU cores (e.g., 4800% for a 48-core server). Figure 8a
and 8b show the results. Without aggregation, each feedback triggers a message report, which
consumes CPU resources up to 98.1% and achieves a report rate of 10.8 Mpps. In contrast, using
aggregation can significantly reduce the message reporting rate by 82.8% to 95.9% and reduce CPU
overhead by 23.5% to 58.1%. Taurus consumes only a portion of a single core’s resources to tackle
400 Gbps traffic feedback, making it well-suited for commercial multi-core servers (e.g., typically
equipped with 96–128 cores [28]).
Taurus’s update filter reduces the unnecessary update overhead. We compare update rates
with and without the filter while handling the same traffic. The results are shown in Figure 8c.
The update filter reduces the update rate from 14.2% to 32.5%. This reduction occurs because
CC algorithms have different control periods for different congestion statuses (e.g., per-packet
increase [36], per-RTT decrease [33]). Some feedback signals remain unchanged beyond the decision
period. Therefore, the update filter helps to avoid unnecessary update overhead.

5.3 Taurus Performance
The goal of Taurus is to provide a high-performance and generic CC framework. To evaluate
performance, we test Taurus using various metrics such as throughput, latency, queue usage, and
FCT. To evaluate generality, we compare a variety of CC algorithms and congestion scenarios.
Traffic Latency. We measure the traffic latency of 10K mice flows that traverse through a link
saturated by the two elephant flows, similar to the study in [36]. The experimental results are shown
in Figure 9a-9d. Taurus exhibits latency distributions similar to those of the native in-datapath CC.
Surprisingly, Taurus even slightly reduces the latency of the mice flows. Further analysis reveals
that the delay caused by separating the flows slightly slows down the rate of increase, especially for
conservative per-RTT additive increase. Thus, before the elephant flow can fully saturate the link
bandwidth, the mouse flow has already acquired available bandwidth to complete its transmission.
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Fig. 9. The performance comparison of CC algorithms using Taurus and native implementation.
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Throughput & Queue Usage. We further evaluate the impact on overall throughput and switch
queue usage when introducing a new flow into a congested link. Specifically, one senders saturate
the link and other seven senders injects 500 KB flow at 2 ms. As depicted in Figure 9e-9h, different
algorithms exhibit varying effects on the convergence rate of flow throughput. All algorithms
can eventually converge to the full bandwidth. Taurus introduces a small degree of fluctuation
in the process of convergence for Swift, HPCC and Bolt algorithms, which is mainly due to their
latency-sensitive reactions or fast feedback periods (less than one RTT). For the iDCTCP algorithms,
Taurus exhibits a minor impact on throughput. Meanwhile, we monitor queue usage from the
switch buffer and find that it behaves similarly to throughput performance. Overall, Taurus does
not cause notable penalties at the granularity of RTT.
FCT Slowdown. We measure the flow completion time (FCT) of selected CC algorithms under
theWebSearch and Hadoop traffic. We compare the actual FCT with the ideal FCT to get the FCT
slowdown. To stress the test, we introduce the incast background traffic with a flow size of around
500KB, as done in [36]. The experimental results are represented in Figure 14. The FCT slowdown
exhibits differences in both CC algorithms and traffic patterns. Overall, Taurus achieves near-native
FCT slowdown. For small-size flows (shorter than 100KB), the additional latency introduced by
Taurus slightly increases FCT by an average of approximately 0.2%. For large-size flows (larger
than 300KB), the separation delay in Taurus slightly slows down their ramp-up, thereby marginally
increasing the FCT slowdown for some algorithms.
Algorithm-wise & Congestion-wise Generality. Taurus provides a variety of congestion
signals (§3) for CC algorithms. Figure 9 illustrates Taurus’s high performance across different
algorithms, demonstrating its algorithm-wise generality. Additionally, we compare the throughput
and latency under both host congestion and network congestion scenarios (settings are described
in §5.1). We deploy the iDCTCP algorithm and integrate a recently proposed HostCC approach[3],
which mitigates host congestion by applying backpressure mechanisms to local CPU-to-memory
traffic. The experimental results are presented in Figure 12 and 13. Taurus achieves high throughput
and low latency in both situations. This is primarily because Taurus introduces the collaborative
signal collection mechanism capable of providing both network and host congestion signals for
users to differentiate congestion points and take appropriate actions. In summary, Taurus can
achieve algorithm-wise and congestion-wise generality.

5.4 Taurus vs. Existing Frameworks
We now compare Taurus with existing frameworks (CCP[52] and DOCA-PCC[15]) in terms of
their throughput, latency, and CPU overhead under different congestion scenarios. We deploy each
framework on the same server and integrate it with the transport datapaths it supports. Currently,
the CCP framework only supports software datapaths and we choose the widely used kernel TCP
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datapath. DOCA-PCC supports hardware transport paths and we choose the RDMA datapaths.
Taurus is deployed as outline in §4.
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Fig. 14. Performance comparison of Taurus with other CC frameworks in different congestion scenarios.

Throughput. We measure the throughput of each framework with different data sizes under
both network congestion and fabric congestion scenarios. The results are shown in Figure 14a and
14b. In scenarios with fabric congestion, both Taurus and DOCA-PCC can achieve extremely high
throughput, reaching around 390 Gbps. In contrast, CCP’s throughput is limited to around 340 Gbps.
This is because both DOCA-PCC and Taurus leverage hardware to execute performance-sensitive
CC tasks, thereby avoiding processing bottlenecks. However, CCP’s software processing capabilities
struggle to address the heavy traffic. The agent logs indicate considerable CC event reports and
frequent CC event drops, impacting the timeliness and accuracy of congestion response and finally
affecting the CC algorithm to reach the desired convergence throughput. In situations with host
congestion, DOCA-PCC sees a notable drop in throughput. This is because it does not support
host signal collection, which is important to identify the locations and severity of host congestion.
Moreover, simply adjusting the sending rate can not fundamentally address the root cause of host
congestion. In contrast, Taurus enhances throughput by 9.3% by utilizing software for congestion
signal collection and performing host CC algorithms.
Latency. We measure the average latency for different data sizes under different congestion
scenarios. The results are depicted in Figure 14c and 14d. In the case of fabric congestion, DOCA-
PCC and Taurus show very low latency, ranging from 5 to 10 𝜇s across different data sizes. However,
CCP experiences higher latency (40-210𝜇s) compared to them. There are two main reasons for this
difference. First, CCP operates with the software transport datapath, which generally has higher
latency compared to the hardware transport datapath [21]. Second, due to the reasons mentioned
earlier, CCP’s poor response to congestion can lead to long queue delays. In the scenarios with host
congestion, DOCA-PCC exhibits the latency increase, while Taurus demonstrates a 28.8% reduction
in average latency compared to DOCA-PCC. This is similar to the results and reasons seen in the
throughput experiments. Overall, Taurus exhibits more adaptability to different scenarios.
CPU Overhead. We gather the host CPU utilization of each framework to evaluate their CPU
overhead. The experimental results are presented in Table 2. The CPU overhead of CCP ranges
from 86.1% to 198.7%. In comparison, Taurus’s CPU overhead is 7.8% to 40%, reducing 78.3% -
158.7% overheads. This improvement is primarily attributed to two factors. Firstly, Taurus offloads
performance-sensitive tasks to hardware, thereby reducing the software workloads. Secondly, the
hierarchical aggregation scheme helps reduce frequent data reporting, thus alleviating the CPU
processing burden. Considering the 400Gbps traffic loads and the prevalent use of multi-core
CPUs in commercial servers [28], the overhead of Taurus is deemed acceptable. Since DOCA-PCC
offloads its decision-making part to hardware, it does not consume host CPU cores. However, as
previously discussed, it misses the opportunity to collect host signals and coordinate host resources,
which is significant for CC algorithms.
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Table 2. The host CPU overhead among different frameworks. *DOCA-PCC runs in the hardware.

Flows 1 2 4 8 16 32

CCP 86.1% 106.3% 148.3% 183.4% 198.0% 198.7%
Taurus 7.8% 17.7% 27.1% 40.0% 40.0% 40.0%

6 Discussion

Receiver-driven CC. Taurus aims to support send-driven CC schemes widely deployed in modern
datacenters (e.g., Google [33], Alibaba [36]), Bytedance [69], etc.), recent studies propose receiver-
driven CC (e.g. Homa [51], EQDS [56], SRID [57], etc.), which involve the receiver proactively
adjusting the sender’s rate to alleviate the incast congestion and reduce tail latency. However,
receiver-driven CC requires an additional RTT to convey credit and only captures last-hop conges-
tion, which has not been widely adopted in production. Extending Taurus to support it would first
require identifying receiver feedback signals, such as GRANT packets in Homa [51] or PULL packets
in EQDS [56], which can be treated as custom feedback. The next step would be to characterize the
performance requirements of CC tasks. We leave their implementation for future work.

7 Experience and Lessons Learnt
Taurus has been deployed in production datacenter networks for several years. We summarize key
takeaways from the deployment experience:
Programmable CC is essential for hardware transport. Over the past few years, major cloud
providers have offloaded network transport onto hardware to meet stringent performance demands.
For example, Google introduced Falcon [60] for AI and HPC, and Alibaba designed LUNA [77] and
SOLAR [49] for storage clusters. A key challenge lies in enabling these fixed hardware stacks to
deliver optimal performance across diverse workloads and traffic patterns at scale. We find that
providing a programmable framework not only facilitates rapid validation of new CC algorithms for
next-generation hardware, but also allows for deploying different CC tailored to different networks
regions (e.g., scale-up vs. scale-out networks [37]).
Message aggregation and update filtering matter. Throughout the production deployment, we
observed bursty traffic patterns that caused transient spikes in message rates (from several Mpps
up to tens of Mpps). Message aggregation was critical to reducing instantaneous processing load
and avoiding CC signal loss. This finding is also demonstrated in CCP experiments §2.3. Moreover,
redundant updates or values beyond data-plane capability have no practical effect; filtering them
before dispatch significantly reduces host-to-device traffic to reduce bus resource competition.
HW/SW co-design is worth further exploration. Early designs employ either software-only
or hardware-only solutions to maximize flexibility or performance. Later studies embedded ARM
[47] or RISC-V cores [17] to balance these tradeoffs. In Taurus, we employ HW/SW co-design to
further enhance generality. Looking ahead, as scale-out networks advance toward 800–1600 Gbps
with hundreds of available paths [41], combining heterogeneous software resources (e.g., ARM,
RISC-V, host CPUs) to build hierarchical decision models for CC remains a promising direction.

8 Related work

ECN-based CC. Such algorithms [5, 42, 64, 78] leverage the widely deployed ECN mechanism in
commercial switches as congestion indicators. Since the ECN is typically carried in the form of
standardized packets such as ECE [5] or CNP [78], Taurus extracts them as pre-defined signals.
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Notably, ECE is carried on ACK packets and thus arrives at a higher frequency (§3.4). To allevi-
ate software agent pressure, Taurus aggregates these signals in the Accumulable engine before
dispatching them to the software.
Delay-based CC. Such algorithms utilize variations in end-to-end delay [50, 76] or deviations
from a target delay [33] as congestion signals. Multi-bit delay encodes the extent of congestion, not
just its presence [33]. Since the delay is carried in ACK packets or probe response packets, Taurus
extracts them as pre-defined signals, reporting both fabric and end-host delay to the software for
decision making. The RTT probing interval affects the frequency of signal reporting and processing,
so it should avoid overly frequent probing that could impose software overhead.
INT-based CC. These algorithms leverage the emerging in-network telemetry technique [24]
to obtain detailed in-network information (e.g., actual rates) for more accurate decisions [36, 68].
INT information is embedded in packet headers defined by different protocols. Taurus extracts
the feedback segment containing the INT data from packets and delegates detailed parsing to
the software. Since INT packets may carry multi-hop information, algorithms impose different
bandwidth overheads and CPU processing costs. A promising future direction is to offload part of
the INT parsing to the on-chip SoC, enabling pre-filtering before passing data to the software.
Learning-based CC. Recent work explores learning-based algorithms [16, 38, 46] that employ
machine learning to adapt CC under diverse network conditions. It primarily targets wide-area
Internet environments [38], where decision intervals are relatively long, and have not yet been
deployed at scale in DCNs. As such, they remain outside the design scope of Taurus.
CCFramework. Regarding signal collection, Taurus identifies it as a task that is both performance-
sensitive and flexibility-sensitive. Therefore, Taurus adopts hardware-software collaborative collec-
tion as detailed in §3.3. For provided signals, Taurus offers a wider range of congestion signals to
cover more congestion scenarios in §4.2. In terms of CC decisions, Taurus employs host software
involvement to address congestion. We hope that our efforts can inspire existing frameworks to
make further enhancements in the above aspects.
Other programmable platforms. Recent datacenter infrastructures integrate heterogeneous
programmable devices, including programmable switches [75], FPGAs [34, 66], DPUs/SmartNICs
[18, 20], and DPDK-based servers [19]. Programmable switches provide pipeline programmability
with ultra-high throughput, parallel to NIC-based platforms. FPGAs and DPUs offload transport
and network functions, with frameworks such as Tonic [8] and DOCA-PCC [15] supporting
programmable CC, though limited in capturing host congestion. DPDK-based servers ensure high
throughput in software but incur substantial CPU overhead. Compared with them, Taurus adopts
the HW/SW co-design architecture to balance performance, generality and flexibility.

9 Conclusion
There is a growing interest in both academia and industry in programmable congestion control
(CC) frameworks. However, existing works either introduce performance issues or lack sufficient
generality. This paper presents Taurus, a hardware-software co-design CC framework to address
this issue. Taurus maps CC tasks into suitable components and proposes efficient mechanisms
to reduce overheads. A large amount of experiments with real-world workloads demonstrate its
performance and generality. We hope this framework can inspire more innovative CC mechanisms.
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A Algorithm Deployment
The lifecycle of a CC algorithm integrated with Taurus comprises initialization, execution, result
updates, and teardown. Below, we illustrate a typical deployment of a custom CC algorithm:
Initialization: Taurus exposes a unified algo_init API to standardize algorithm context and
parameter initialization and to bind the algorithm to required events. Concretely, algorithms register
their context and parameters via a user_algoname_setup interface, which accepts the algorithm-
specific context and parameter structures. Event handlers are bound using algo->handle__event
callbacks. The set of supported event types is summarized in Table 3.
Execution: The algorithm agent is compiled into a binary and deployed on the software side.
During runtime, the agent consumes signals reported from the datapath and invokes the registered
handlers (e.g., user_algoname_handle_*_event) in response to the corresponding events. Users
implement these handler functions to realize their algorithm’s decision logic.
Result updates: Algorithms publish outcomes via the result_update interface, which updates
algorithm state, context, and related parameters and coordinates any necessary actions toward the
datapath.
Teardown: Upon receiving a termination or interrupt signal, the agent performs cleanup by
releasing algorithm contexts, freeing allocated resources, and unbinding event handlers.
#include "Taurus_algo.h"

// the unified entrance provided by the CC agent
ALGO_STATUS algo_init(struct pcc_algo *algo) {

switch (algo->algo_type) {
case user_algo1:

algo->setup_algo = user_algo1_setup;
algo->handle_ack_event = user_algo1_handle_ack_event;
algo->handle_rtt_event = user_algo1_handle_rtt_event;
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Table 3. Primary APIs and events provided to users. 1) a: algorithm; 2) c: context; 3) p: parameter; 4) e: event;
5) r : result; 6) id : flow index. *: defined by algorithms

Primary APIs Description

algo_init(*a) Initialize CC contexts and params.
user_algo*_setup(*c,*p) Interface for CC setup.
user_algo*_handle_*_event(*e, id, *c,*p) Interface for CC decisions.
result_update(*c,*p,r,id) Issue update results to hardware.
teardown(*a) Tear down a CC algorithm.

Events Description

CC_ACK_EVT Acknowledged packet event.
CC_ECN_EVT ECN-marked packet event.
CC_OOO_EVT Out-of-order packet event.
CC_RTO_EVT Retransmission-timeout event.
CC_RTT_EVT RTT probing result event.
CC_TX_EVT Tx bytes & packets event.
CC_CST_EVT* Custom feedback events.
CC_HOST_EVT* Host congestion events.

...
case user_algo2: ...
default: return DEFAULT_ALGO;

}
}

// users define their own setup logic
uint32_t user_algo1_setup(struct user1_algo_conext &ctx, struct user1_algo_param &param) {

init_algo1_context(ctx);
init_algo1_param(param);

}

// user's CC strategies that react to ack events
uint32_t user_algo1_handle_ack_event(struct ack_event &acks, uint32_t &id,

struct user1_algo_conext &ctx, struct user1_algo_param &param) {
do congestion control algorithm for ack event;
result_update(ctx, param, result, id);

}

// user's CC strategies that react to rtt events
uint32_t user_algo1_handle_rtt_event(struct ack_event &acks, uint32_t &id,

struct user1_algo_conext &ctx, struct user1_algo_param &param) {
do congestion control algorithm for rtt event;
result_update(ctx, param, result, id);

}

// tear down a CC algorithm
uint32_t teardown(struct pcc_algo *algo) {

do tear down using the interrupt interface;
}
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B Experiment Artifact
B.1 Artifact check-list
The following lists the experiment environments, compilation and testing tools, and project repos-
itory used in our experiments. We provide the exact version information and installation links.

• Program: C/C++
• Compilation: g++ 11.1.0/5.4.0, gcc-11.0.0/5.4.0
• Kernel: Linux 4.18
• MLC: https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-
latency-checker.html

• CPU sampling: https://man7.org/linux/man-pages/man1/top.1.html
• iperf3: iperf-3.16 https://github.com/esnet/iperf/releases
• perftest: perftest-24.01.0 https://github.com/linux-rdma/perftest/releases/
• netperf: netperf-2.6.0 https://github.com/HewlettPackard/netperf
• PCIe Model: https://dl.acm.org/doi/pdf/10.1145/3230543.3230560
• NS3 Simulation Repo(HPCC): https://github.com/alibaba-edu/High-Precision-Congestion-
Control/tree/master

• NS3 Simulation Repo(Swift, Bolt): https://github.com/serhatarslan-hub/bolt_cc_ns3
• CCP Repo: https://github.com/ccp-project/ccp-kernel.git
• DOCA-PCC Repo: https://developer.nvidia.com/doca-downloads
• HostCC Repo: https://github.com/Terabit-Ethernet/hostCC

B.2 Installation & Launch
Use the following guides to install each framework and algorithm in the testbed and simulation
environments.

# for CCP in the testbed
do the installation by following guides at

https://ccp-project.github.io/ccp-guide/setup/index.html↩→
do the launch by following guides at

https://ccp-project.github.io/ccp-guide/running.html↩→

# for DOCA-PCC in the testbed
do the installation by following guides at https://docs.nvidia.com/doca/archiv ⌋

e/2-5-2/nvidia+doca+installation+guide+for+linux/index.html↩→
do the launch by following guides at https://docs.nvidia.com/doca/archive/2- ⌋

5-2/nvidia+doca+pcc+application+guide/index.html↩→

# for HostCC in the testbed
do the installation by following guides at

https://github.com/Terabit-Ethernet/hostCC/tree/main/utils↩→
do the launch by following guides at

https://github.com/Terabit-Ethernet/hostCC/tree/main/scripts↩→

# for CC algorithms in NS3-Simulation
do the installation by following guides at

https://github.com/alibaba-edu/High-Precision-Congestion-Control/↩→
do the launch by following guides at

https://github.com/alibaba-edu/High-Precision-Congestion-Control/↩→
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B.3 Experiment workflow & result collection.
In the following, we detail the concrete experiment workflows as well as the methods used to
collect and analyze results in each evaluation part.

B.3.1 Micro-benchmarks. We deploy Taurus on the testbed and initialize the Taurus agent. To
evaluate the system overhead, multiple flows are generated (ranging from 1 to 16) from multiple
sender hosts to a single receiver using perftest, and throughput is measured once the system
reaches steady state. The CPU utilization of the Taurus agent is sampled periodically using Linux
top to characterize software overhead. In parallel, FPGA hardware registers record both message
reporting and result update times. The software periodically reads these registers, computes
differences between consecutive readings, and thereby quantifies the message rates.

B.3.2 Algorithm performance. Taurus is evaluated in both testbed and simulation environments
to measure throughput, latency, queue occupancy, and FCT. In the testbed, perftest is used to
evaluate throughput under diverse scenarios as described in §5.3, while netperf measures latency
and FCT. In simulation, algorithms execute within NS3 with a PCIe latency model for comparisons
with alternative CC algorithms and in-datapath implementations. NS3 provides detailed metrics on
throughput, latency, queue occupancy, and FCT.

B.3.3 Framework comparison. Taurus, DOCA-PCC, and CCP are deployed on the testbed to compare
framework performance. Local host congestion is induced using MLC, with traffic volume config-
urable via MLC parameters to emulate CPU-to-memory bottlenecks. Fabric congestion is generated
by initiating multiple sender flows targeting the same receiver. Throughput measurements are
collected using perftest and iperf3, while netperf captures the latency. This setup enables
Taurus to be evaluated under different congestion scenarios.
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