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ABSTRACT

As the scaling law persists consistently, distributed training has become the standard

methodology to manage the exponential increase in model size and training data. Fol-

lowing this trend, distributed training systems are developed to handle the complexities

and scale of distributed training and to embrace the computation powers of multiple de-

vices. However, the communication remains one of the major challenges in these systems.

The communication issues manifest in two key domains: the varied communication pat-

terns across training paradigms during the model training stage, and the limited com-

munication performance imposed by CPU-based processing during the data and model

management stages.

This dissertation delineates my research efforts on building communication-efficient

distributed training systems through paradigm-specific optimizations for the model train-

ing stage and hardware-accelerated optimizations for the data and model management

stages. The resulting optimized systems are full-stack solutions tailored for hardware-

accelerated Graph Neural Network (GNN) and Large Language Model (LLM) training.

For the sampling-based GNN training paradigm, we propose DGS, a communication-
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efficient graph sampling framework. Its key idea is to reduce network communication

cost by sampling neighborhood information based on the locality of the neighbor nodes

in the cluster, and sampling data at both node and feature levels. As a result, DGS strikes a

balance between communication efficiency and model accuracy, and integrates seamlessly

with distributed GNN training systems.

For the full-graph GNN training paradigm, we design G3, a scalable and efficient

full-graph training system. G3 incorporates GNN hybrid parallelism to scale out full-

graph training with meticulous peer-to-peer intermediate data sharing, and accelerates

the training process by balancing workloads among workers through locality-aware iter-

ative partitioning, and overlapping communication with computation through a multi-

level pipeline scheduling algorithm. Although initially tailored for GNN training, we

believe the fundamental principle of peer-to-peer sharing data in hybrid parallelism can

be generalized to other training tasks.

For the LLM training paradigm, we introduce Hermod, a near-optimal coflow sched-

uler that orchestrates all coflow types at the cluster level during LLM training. Hermod

employs the insight that coflows are characterized by three model factors, and designs 1)

model factor-driven inter-coflow scheduling to align with the LLM training DAG, and 2)

matching-based intra-coflow scheduling to maximize transmission rates for high-priority

coflows. We believe our revisit of coflow scheduling in LLM training will inspire further

LLM training optimizations.

To enhance communication performance in distributed services, we present LEO, a

hardware-accelerated communication framework for distributed services. LEO offers 1) a

communication path abstraction to describe various distributed services with predictable

communication performance across edge accelerators, 2) unified APIs and wrappers to

simplify programming experience with automatic communication configuration, and 3) a

built-in multi-path communication optimization strategy to enhance communication effi-

ciency. We believe LEO will serve as a stepping stone for the development of hardware-

accelerated distributed services in distributed training systems.
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CHAPTER 1

INTRODUCTION

Recent years have witnessed an explosive use of deep neural networks (DNNs) in multi-

ple application domains such as computer vision (CV) [68], natural language processing

(NLP) [148], and graph tasks [66, 91, 149], etc. As the scaling law for DNNs [86] persists

consistently, both the model and dataset sizes are stipulated to grow exponentially, re-

sulting in distributed training as the de-facto methodology embraced to make the training

time manageable, e.g., from months to hours. Following this trend, distributed training

systems are developed to handle the complexities and scale of distributed training for AI

researchers. These systems leverage the power of multiple computing resources, such as

GPUs, CPUs, and DPUs across several machines, to parallelize and accelerate the train-

ing tasks. There have been tremendous distributed training systems supported vividly by

communities, ranging from general machine learning systems such as TensorFlow [30],

PyTorch [102, 127], and MXNet [44], to specific distributed training libraries including

Horovod [141], BytePS [80], DeepSpeed [137], DGL [158, 196], and Ray [121].

The conventional workflow of distributed training systems encompasses the following

stages: 1) data loading for randomly shuffling data and loading them into batches in the

systems; 2) model training, the core stage, for parallelizing forward and backward prop-

agation, loss calculation, and parameter updates; 3) checkpointing which periodically

stores the model parameters during training for the avoidance of interruptions during

training; and 4) model exporting to export the trained model for production deployment.

Communication is involved throughout these stages and hence plays a pivotal role in

distributed training systems. The communication processes include: the data synchro-

nization across different nodes, gradient aggregation, and embedding synchronization

during the model training stage, and the network scheduling across different hardware

during data and model management stages, etc. Consequently, the effectiveness of dis-

tributed training systems is largely dependent on its ability to maximize the efficiency of

communication [40, 80, 124].

1



1.1 Communication Issues in Distributed Training Systems

In model training stage. The communication patterns during the model training stage

vary significantly across training paradigms, leading to diverse communication challenges.

For instance, Graph Neural Network (GNN) training requires both graph-related opera-

tions for neighbor aggregation and neural network computations at each layer [78, 116],

whereas large language model (LLM) training employs hybrid parallelisms, such as data,

pipeline, tensor, sequence, and expert parallelisms [103]. This paradigm diversity results

in distinct communication bottlenecks. In GNN training, embedding synchronization

across workers poses a major challenge, as its volume scales exponentially with the num-

ber of GNN layers. Researches indicate that this synchronization can consume up to 90%

of the total training time [40]. For LLM training, the simultaneous adoption of multi-

ple parallelisms leads to overlapping operations at the cluster level. Profiling results from

production environments [41] and research studies confirm that such overlaps lead to mis-

matches between cluster resources and the LLM training dependency graph, ultimately

hindering cluster-wide performance [100, 130].

In data & model training stages. For data & model training stages in distributed training,

they require efficient data access across multiple machines and robust data storage solu-

tions [44, 101, 123], typically facilitated by classical distributed services such as key-value

stores, distributed file systems, and elastic block storage in cloud environments. These

storage solutions are designed to provide scalable and reliable access to data, which is es-

sential for the smooth operation of distributed training workflows. However, traditional

CPU-based processing introduces significant performance bottlenecks in throughput and

latency. Recent studies [70] indicate that data loading and preprocessing account for up to

29.5% of total training time, while correctness tests contribute an additional 19.0%, lead-

ing to GPU inefficiencies where nearly half of the computation time is spent waiting for

data. To address these inefficiencies, distributed training systems must incorporate more

efficient communication mechanisms, such as hardware-accelerated solutions, to enhance

data transfer efficiency and overall system performance [90, 119, 139, 154, 168].

Summary. In conclusion, the different communication issues above raises the follow-

ing question: how to build communication-efficient distributed training systems to address the

2



varied communication issues encountered during end-to-end distributed training? This disser-

tation answers this question affirmatively through paradigm-specific optimizations for

model training stage, and hardware-accelerated optimizations for data and model man-

agement stages. By applying these targeted "apple-to-apple" optimizations to their respec-

tive stages, the distributed training systems with communication efficiency is achievable.

1.2 Contributions

We summarize the key contributions of this dissertation in building communication-efficient

distributed training systems through paradigm-specific optimizations for the model train-

ing stage and hardware-accelerated optimizations for the data and model management

stages, as shown in Figure 1.1.

Sampling-based
GNN Training Paradigm

Full-graph GNN
Training Paradigm

A Communication-Efficient 
Graph Sampling System

(Chapter 3)

LLM Training
Paradigm

Model Training Stage Data &Model Mgmt Stages

Hardware-accelerated
middleware

A Scalable and Efficient
Full-Graph GNN Training System

(Chapter 4)

A Near-Optimal Coflow
Scheduler for LLM Training

(Chapter 5)

A Hardware-accelerated Comm.
Framework for Distributed Services

(Chapter 6)

Figure 1.1: The contributions of this thesis.

1.2.1 A Communication-Efficient Sampling System for Distributed GNN
Training

Distributed GNN training tends to generate huge volumes of communication. To reduce

communication cost, the state-of-the-art sampling-based techniques sample and retrieve

only a subset of the nodes. However, our analysis shows that current sampling algo-

rithms are still inefficient in network communication for distributed GNN training, which

is mainly because of three problems: first, they overlook the locality of the sampled neigh-

bor nodes in the cluster; second, they sample data only at the coarse-grained graph node

level; and third, some mechanisms they adopted fall short in distributed scenarios.

In Chapter 3, we propose a graph sampling framework, DGS, for distributed GNN

training, which effectively reduces network communication cost while preserving the fi-
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nal GNN model accuracy. To achieve this, DGS samples neighborhood information based

on the locality of the neighbor nodes in the cluster, and samples data at the levels of not

only graph nodes but also node features based on explanation. Specifically, DGS constructs

an explanation graph which preserves the relationship between the local graph and re-

mote nodes, and leverages the recently-proposed model explanation technique to design

an online explanation scheme that interprets the importance of nodes and features.

We have implemented a fully functional DGS prototype, and evaluation results show

that DGS achieves up to 1.25× throughput speedup over the state-of-the-art FastGCN

and reduces the communication cost by up to 28.3%, while preserving the final model

accuracy almost the same as that of full-batch training.

1.2.2 A Scalable and Efficient Full-Graph GNN Training System

Graph Neural Networks (GNNs) have emerged as powerful tools to capture structural

information from graph-structured data, achieving state-of-the-art performance on appli-

cations such as recommendation, knowledge graph, and search. Graphs in these domains

typically contain hundreds of millions of nodes and billions of edges. However, previ-

ous GNN systems demonstrate poor scalability because large and interleaved computa-

tion dependencies in GNN training cause significant overhead in current parallelization

methods.

In Chapter 4, we design G3, a distributed system that can efficiently train GNNs over

billion-edge graphs at scale. G3 introduces GNN hybrid parallelism which synthesizes three

dimensions of parallelism to scale out GNN training by sharing intermediate results peer-

to-peer in fine granularity, eliminating layer-wise barriers for global collective commu-

nication or neighbor replications as seen in prior works. G3 leverages locality-aware it-

erative partitioning and multi-level pipeline scheduling to exploit acceleration opportunities

by distributing balanced workload among workers and overlapping computation with

communication in both inter-layer and intra-layer training processes.

We show via a prototype implementation and comprehensive experiments that G3

can achieve as much as 2.24× speedup in a 16-node cluster, and better final accuracy over

prior works.
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1.2.3 A Near-Optimal Coflow Scheduler for LLM Training

Training large language models (LLMs) generates diverse coflows within a cluster, requir-

ing optimized scheduling to enhance communication-computation overlap and minimize

training time. Existing coflow schedulers are limited by endhost-only scheduling, and fail

to address contentions across and within coflows, leading to suboptimal communication

schedules and inefficient bandwidth utilization.

In Chapter 5, we present Hermod, a near-optimal coflow scheduler that orchestrates

all coflow types at the cluster level during LLM training. The key insight behind Her-

mod is that coflows can be uniquely characterized by three model factors—microbatch

ID, coflow type, and layer ID—enabling optimal scheduling decisions. Leveraging this

insight, Hermod employs a two-layer strategy: (1) model-factor driven inter-coflow prior-

ity scheduling to align with the LLM training DAG, and (2) matching-based intra-coflow

scheduling to maximize transmission rates within the highest-priority coflows.

Our fully functional prototype achieves significant job completion time reductions,

with up to 1.44× and 2.07× speedups over state-of-the-art schedulers in testbed and sim-

ulation experiments, respectively.

1.2.4 A Hardware-Accelerated Communication Framework for Distributed
Services

Distributed services increasingly employ high-performance edge accelerators to offload

message-level computation and improve system performance. However, integrating hard-

ware acceleration into these services poses significant communication challenges due to

poor portability, complex configuration, and under-utilized resources issues.

In Chapter 6, we present LEO, a hardware-accelerated communication framework for

distributed services. LEO facilitates portability across both application and hardware via

introducing a communication path abstraction, which is capable of describing multiple ap-

plications with predictable communication performance across diverse hardware. Addi-

tionally, LEO exposes unified APIs and wrappers to ease the programming for developers

and enable automatic communication configuration. Moreover, LEO incorporates a built-

in multi-path communication optimization to enhance communication efficiency.
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We have implemented a prototype of LEO and evaluated it with four case studies on

an FPGA-based hardware platform. Our results show that LEO is both generic and effi-

cient for multiple distributed services, yielding up to 2.62× speedup over baselines with

negligible overhead.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 briefly introduce the back-

ground of distributed training systems and communication in these systems. Chapter 3

introduces DGS, where we present the detailed design, implementation, and evaluation

for a communication-efficient sampling framework for distributed GNN training. Chap-

ter 4 describes G3, where we propose a GNN hybrid parallelism for addressing the com-

plex data dependency in GNN training, and accommodate the associated performance

issues accordingly. Chapter 5 presents Hermod with near-optimal scheduling policies for

both inter- and intra-coflow scheduling. Chapter 6 presents LEO, a hardware-accelerated

communication framework for distributed services. Finally, we conclude the thesis and

discuss future work in Chapter 7.
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CHAPTER 2

BACKGROUND

In this chapter, we introduce the background of distributed training systems and hardware-

accelerated distributed services. We first go through the basic concepts of distributed

training system, including the basics of distributed training and workflow of the training

systems (§2.1). Then we introduce the hardware-accelerated distributed services (§2.2).

2.1 Basic Concepts of Distributed Training System

Model
Replica Forward Backward Grads

Sync
Update
Params

Emb.
Sync

Data 0

Model
Replica Forward Backward Grads

Sync
Update
Params

Emb.
Sync

Data 1

Figure 2.1: Conventional data parallel training. [81]

Distributed training. A conventional data parallel training schema is shown in Fig-

ure 2.1. Initially, each worker possesses a replica of the model and optimizer states and

a subset of the training data. During training, the model replica in each worker executes

the forward and backward propagation in parallel. After the gradients are computed, the

workers synchronize and aggregate them in a layer-wise manner, and update the model

upon completion of each iteration. The communication in training centers around the gra-

dient synchronization and embedding synchronization. The former typically follows BSP

manner for accuracy guarantee, facing challenges of communication stalls and dynamic

bandwidth contention [124,160]. And the latter suffers from huge communication volume

determined by the model type and size [123, 155].
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Workflow of distributed training systems. The classical workflow of distributed train-

ing systems consists of the following crucial stages, with each stage requiring efficient

distributed services:

• Data Loading: Once preprocessed, data is loaded into the distributed system in batches.

This stage is critical for efficient memory management and ensuring that the computa-

tional resources are effectively utilized without bottlenecks, requiring distributed file

system and elastic block storage for data access and distribution.

• Model Training: The core of the workflow, model training, involves forward propaga-

tion, loss calculation, backpropagation, and weight updates. In distributed training,

this process is parallelized across multiple nodes, necessitating constant communica-

tion between them to synchronize model updates and gradients. To ensure efficient

communication, distributed services such as key-value store and GPUDirectRDMA [9]

are used to store and exchange model parameters and gradients.

• Checkpointing: Periodically, the state of the model (weights, parameters) is saved. This

not only provides a means to resume training in case of interruptions but also allows for

the evaluation of the model at different stages of training. Such checkpoints are stored

in a distributed file system or elastic block storage for durability and accessibility.

• Model Exporting: After training, the model is exported into a format that can be de-

ployed in production. This step may also involve additional optimizations to improve

performance in real-world applications. The exported model is stored in a distributed

file system or elastic block storage for durability and deployment.

To keep pace with the ever-increasing training speeds of GPUs, the services employed

in the above stages are often hardware-accelerated inline in the datapath to facilitate low-

latency and high-throughput communication, as depicted in Figure 2.2.

2.2 Hardware-accelerated Distributed Services

Given the rapid increasing computational capacity of GPUs, e.g., from 14 TFLOPS of V100

to 2250 TFLOPs of B100 in terms of FP16 [8], the software-optimized distributed services
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Figure 2.2: Hardware-accelerated distributed services.

often fail to consistently satisfy the performance demands of distributed training systems.

Therefore, system developers deploy multiple types of domain-specific accelerators, e.g.,

FPGA [42], SoC [111], and programmable switch [83] to explore the best performance op-

portunity for different distributed services. Next we discuss the exploration of two types

of widely deployed hardware accelerators at endhost, i.e., FPGA and SoC, in distributed

services.

FPGA-accelerated systems. FPGA is a critical component in smartNIC that provides high

throughput and flexibility for in-network processing. Specifically, Microsoft has widely

deployed FPGAs in its datacenters [42] to accelerate the network stack in Azure cloud [59].

KV-Direct [97] improves key-value performance via leveraging programmable NIC to ex-

tend RDMA primitives to support remote key-value operations. [192] proposes to offload

compaction operations to FPGAs for LSM-based key-value stores.

SoC-accelerated systems. While FPGA-based accelerator showcases its high throughput

and energy efficiency in network processing, the complexity in terms of its programming

raises the bar for system developers. SoC-based smartNICs, on the other hand, provides a

more user-friendly programming interface and is widely deployed in multiple distributed

services. Multiple systems have been proposed leveraging SoC-based smartNICs. Specif-

ically, LineFS [90] decomposes DFS operations into execution stages to support parallel

datapath execution pipelines on the smartNIC. Solar [119] accelerates EBS services by
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unifying packet processing and storage virtualization pipelines on DPUs. Moreover, iP-

ipe [111], Floem [131], and Wei et al. [168] also propose solutions for accelerating key-value

store and distributed file system.
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CHAPTER 3

DGS: A COMMUNICATION-EFFICIENT GRAPH
SAMPLING FRMEWORK

Graphs are pervasive in many real-world applications, such as social network analy-

sis [72], molecular structure generation [182], and recommendation systems [69, 184]. Re-

cent years have witnessed a surge of works that extend deep neural networks (DNNs) to

extract structural information from graphs. These new methods, known as Graph Neural

Networks (GNNs), have achieved satisfactory performance in various graph-related tasks

including node classification, link prediction, and graph classification [66, 91, 149, 191].

GNNs express structural information by combining classical NN operations (e.g., con-

volution and matrix multiplication) with iterative neighborhood aggregation. Figure 3.1

illustrates the computation process upon one node: a GNN layer (i) aggregates the em-

beddings of the node’s one-hop neighbors, and (ii) transforms the aggregated embed-

ding through NN operations to update the node’s embedding. The two operations iterate

across each of the n GNN layers, and the node’s last-layer embedding contains informa-

tion from all its n-hop neighbors.

Training GNNs in large graphs is challenging because the neighborhood aggregation

procedure can involve a large number of multi-hop neighbor nodes, quickly exceeding

the memory limitation of a single device. Therefore, large GNN training tasks are usually

processed in a distributed manner, where the graph is first partitioned into subgraphs and

then trained in parallel (each subgraph on one worker) with necessary communication.

However, while the memory constraint is relieved, iterative neighborhood aggregation

makes inter-worker communication a bottleneck for GNN training. As the number of

neighbor nodes can be exponentially large when increasing the number of GNN layers,

the total communication volume increases drastically and affects the training efficiency

significantly.

To reduce communication overhead in distributed GNN training, researchers have

proposed the sampling-based techniques [140], which sample and retrieve only a sub-
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set of the features and thus generate less communication than obtaining the whole set of

features. However, our analysis (§3.1) finds that current sampling algorithms [43, 45, 66,

177,185,199] are still far from being communication-efficient for distributed GNN training,

mainly because of the following problems.

First, existing sampling algorithms overlook the locality of the neighbor nodes in the

cluster, because they are initially designed for low memory footprint in mini-batch training

on a single worker but not for distributed scenarios. Simply migrating these algorithms

to distributed GNN training overlooks the difference between accessing local and remote

nodes, and thus leads to extra communication traffic.

Second, existing sampling algorithms sample data at the relatively coarse-grained node

level to guarantee high training accuracy. However, our experiments (§3.1.4) show that for

popular sampling algorithms like GraphSAGE random neighbor sampling [66], as many

as 30% features can be reduced with no more than 0.5% accuracy loss.

Third, some mechanisms adopted in sampling algorithms can severely lower the per-

formance of distributed training. For example, LADIES [199] requires layer-wise adaptive

compute and update of global sampling probability during training. While the overhead

of such update is tolerable in a single worker, it becomes overwhelming in distributed

scenario because of the frequent and heavy synchronization of probability tensors among

workers.

Based on the above analysis, in this paper we study the graph sampling problem for

efficient distributed GNN training. The basic idea is to minimize the communication

overhead of each GNN training iteration without affecting the accuracy. To this end,

we propose DGS, a distributed graph sampling framework that samples neighborhood

information at the levels of both graph nodes and node features while preserving the fi-

nal GNN model accuracy. DGS first constructs an explanation graph which preserves

the relationship between the local graph and remote nodes to facilitate the explanation

process. It then designs an online explanation scheme that interprets the importance of

nodes and features leveraging the state-of-the-art explanation technique [179] with minor

system overhead.

We implement and evaluate DGS over 4 real-world datasets with popular GNN mod-

els [66,91,149]. Our results demonstrate that DGS can speed up distributed GNN training
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process by 1.25×-4.01×, while preserving the final model accuracy almost the same as

that of full-batch training.

We summarize our contributions in this paper as follows:

• We analyze and identify the factors that determine the communication overhead in dis-

tributed GNN training, and illustrate the limitations of existing sampling algorithms

when applied in a distributed scenario.

• We propose a novel sampling framework (DGS) which takes the locality of nodes in the

cluster into consideration and applies sampling at both node and feature levels.

• We implement DGS and validate its effectiveness with extensive experiments. Experi-

mental results demonstrate the effectiveness of DGS: it achieves up to 1.25× speedup

over the state-of-the-art FastGCN and reduces the communication cost by up to 28.3%,

while preserving the final accuracy almost the same as full-batch training.

3.1 Background and Motivation

3.1.1 Graph Neural Networks (GNNs)

GNNs emerge as a family of neural networks that perform representation learning: they

take a graph as input and map each node into a d-dimensional vector, a.k.a., an embedding.

The embeddings are then used as inputs for downstream machine learning tasks, such as

node classification, link prediction, and graph classification [66, 91, 149].

The computation process of GNN at one layer is illustrated in Figure 3.1. The GNN

layer first aggregates the embeddings of the neighbor nodes calculated from the previous

GNN layer, then applies classical NN operations such as matrix multiplication or con-

volution upon the aggregated result, and finally updates the embedding of that node.

Formally, the neighborhood aggregation and NN operations are expressed as follows:

a(k)v = Aggregate(k)({h(k−1)
u | u ∈ N (v)}) (3.1)

h(k)v = Update(k)(h(k−1)
v , a(k)v ) (3.2)
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Figure 3.1: Computation process upon one node in GNN layer K by first aggregating its
neighbors’ embeddings, and then applying NN operations for its layer K output embed-
ding.

where h(k)v is the embedding of node v at the k-th GNN layer, a(k)v denotes the activation

output of the aggregated results, and N (v) represents the neighbors of v in the graph.

For each node v at layer k, Aggregate first outputs a(k)v by gathering the embeddings of

its neighbors with an accumulation function, and then Update computes the node’s new

embedding from its previous embedding h(k−1)
v and aggregation result a(k)v . The above

operations iterate from layer 1 to K.

3.1.2 Sampling Algorithms

Sampling algorithms are originally designed for mini-batch training to reduce the mem-

ory requirement [43, 66]. Mini-batch training allows for a small memory footprint during

training and strikes a balance between small memory footprint and fast model conver-

gence [147]. For GNNs, however, the iterative neighborhood aggregation tends to ex-

plode the GPU memory during training. To alleviate the memory issue, sampling al-

gorithms are proposed to down-sample multi-hop neighborhood features of each mini-

batch. For example, GraphSAGE [66] and VR-GCN [177] applies neighbor sampling upon

each mini-batch. FastGCN [43], AS-GCN [74], and LADIES [199] adopts layer-wise sam-
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pling strategies which generate sampling decision layer-by-layer. ClusterGCN [45] and

GraphSAINT [185] use subgraph sampling to extract subgraphs as training samples.

3.1.3 Distributed GNN Training

As graphs are becoming too large to fit into a single device, training tasks over them are

usually processed in a distributed manner, i.e., distributed GNN training (DGT).

Following the experience of distributed DNN training [80], DGT typically applies data

parallelism among workers to parallelize the training process. In such paradigm, the in-

put graph is partitioned into subgraphs with classical partition strategies [88], and the sub-

graphs are then sent to different workers. When the training process starts, each worker

simultaneously trains GNN over its assigned graph partition and synchronizes model pa-

rameters at each iteration.

Due to the neighborhood aggregation introduced in §3.1.1, communication between

workers not only contains information of conventional parameters/gradients, but also in-

formation of neighbor embeddings for aggregation. From the view of a worker in DGT, to

compute all its nodes’ embeddings at layer K, it requires all its neighbors’ embeddings at

layer K-1, which again requires their neighbors’ embeddings at layer K-2 recursively until

layer 1. The amount of data needed grows exponentially with the number of GNN layers,

resulting in drastically increased communication volume and making DGT a network-

intensive workload [60, 147].

Several techniques [60, 78, 116, 147, 164] have been proposed to alleviate the prob-

lem, among them the adoption of sampling in distributed scenario is a more promis-

ing one [140]. The idea of down-sampling neighbors at each subgraph helps decrease

the communication volume across workers in DGT with minor model accuracy degra-

dation [140, 196], thus effectively accelerating the global training process. As a matter of

fact, sampling techniques have already been widely adopted in multiple distributed GNN

systems [107, 196, 197].

Although the application of sampling to the distributed scenario seems natural, our

analysis shows that current sampling algorithms are still far from communication-efficient

for DGT.
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3.1.4 Problems of Existing Sampling Algorithms

DGT Communication Cost Analysis. Given an input graph, DGT system divides it into

n subgraphs and distributes them to workers for K-layer GNN training. The feature size

at each node is F , and N j
Gi

denotes subgraph Gi’s jth-hop neighbor nodeset. Following

the iterative aggregation scheme in Equation 3.1,we formalize the communication cost of

worker Wi as follows:

Comm(Wi) = (|
K⋃

j=1

N j
Gi
− Gi|)× |F| (3.3)

Note that here we omit the communication cost caused by model synchronization be-

cause the network traffic generated by GNN models is trivial compared with the traffic

generated by iterative neighborhood aggregation [196].

By summing up the communication cost of all workers, we obtain the total communi-

cation cost:

Commtotal =
n

∑
i=1

Comm(Wi) =
n

∑
i=1

ni
rmt × |F| (3.4)

where ni
rmt denotes the size of Gi’s K-hop neighborhood from remote workers.

Based on Equation 3.4, we find out that the size of remote neighbor nodes and the

size of features are the root cause of the high communication cost in DGT. Below we

elaborate our three observations that prevent existing sampling algorithms from being

communication-efficient.

Observation 1: Existing sampling algorithms overlook the locality of the neighbor nodes in the

cluster. All sampling algorithms can be categorized as an optimization strategy that de-

creases the number of neighbor nodes at each worker for lower network traffic. These

algorithms, however, consider all neighbor nodes the same but overlook the different

overhead of accessing local and remote nodes. Such overlook may lead to extra com-

munication overhead caused by accessing the remote nodes which contribute trivial to
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model convergence. Therefore, the locality of neighbor nodes in the cluster indicates a

promising communication optimization opportunity.

Observation 2: Existing algorithms only sample data at the coarse-grained node level rather

than the fine-grained feature level. Our second observation originates from the second factor

in Equation 3.4, i.e., the feature size F . As all existing algorithms sample data at node-

level, we consider the question of whether sampling data can be done at a finer granular-

ity (i.e., feature-level) with minor model accuracy compromise? As the features in many

popular graph datasets [66,71] are pre-processed and expressed as sparse vectors, feature-

level sampling may have no effect on the final accuracy. To verify this property, we run

an experiment that trains a 2-layer GraphSAGE over Reddit [66], a popular graph dataset.

We use the classical sample strategy of GraphSAGE, i.e., 25 for the first layer and 10 for the

second layer. Note that as the average node degree of Reddit is 984, our setting is an ag-

gressive sampling strategy at node-level. During training, we randomly lose some values

of the sampled nodes’ features (i.e., set those values to 0) with varying loss probabilities.
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Figure 3.2: Impact of random feature loss on model convergence: the 2-layer GraphSAGE
converges to a tolerable final accuracy (no more than 0.5% accuracy loss) within the same
iterations when the loss ratio is below 40%.

The result is shown in Figure 3.2, from which we can see that even after we apply an

aggressive sampling strategy at node-level, as much as about 20% random loss of features

has little impact on the model performance: the model can still achieve the same final

accuracy within the same iterations. Besides, when the ratio is below 30%, the model

can converge to approximately the same final accuracy with no more than 0.5% accuracy

loss, within the same iterations. Therefore, the idea of sampling data at feature-level also
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indicates a promising optimization opportunity for DGT.

Note that in the above experiment we lose the features randomly without any intelli-

gent selection. If we identify and select those features that may provide major contribu-

tions to model convergence, we can filter out more “unimportant” features from neigh-

boring nodes to achieve much less communication traffic while still preserving the model

accuracy.

Observation 3: Some mechanisms adopted in existing algorithms may degrade the training per-

formance. Most sampling algorithms are designed by AI researchers with the assumption

of running algorithms in a single host. However, when the scenario goes distributedly,

some mechanisms may become a poor fit. For example, LADIES [199] requires layer-wise

adaptive computation and update upon the global sampling probability during training.

While the update overhead is trivial in a single worker, it becomes severe in distributed

scenario due to the heavy synchronization of probability tensor among workers. Our

experimental results (§3.4.1) also demonstrate that such overhead caused by synchroniza-

tion can severely degrade the overall performance (up to 2.94× worse performance).

3.1.5 Opportunity and Challenges

Opportunity: The above three observations inspire us to design a new sampling al-

gorithm for DGT which targets reducing the less important communication cost for each

worker. That is, for a given subgraph, we need to identify a subset of remote nodes and

features from its multi-hop neighborhood that contributes little to prediction, while keep-

ing minimizing the synchronization frequency as much as possible in mind.

A recent study, GNNExplainer [179], is a natural fit for our problem. Its goal is to

identify a subgraph Gs from a complete graph Gc and the associated features Xs from Xc

that are important for the induced GNN’s prediction ŷ. To achieve this, the model formu-

lates the importance of node and feature by quantifying the change in the probability of

prediction ŷ = Φ(Gc, Xc). This metric, known as mutual information (MI), is defined as:

maxGs MI(Y, (Gs, Xs)) = H(Y)− H(Y|G = Gs, X = Xs) (3.5)

where H(Y) is the entropy term of the prediction. The above equation can be explained

as: if masking one node from Gc strongly decreases the probability of prediction ŷ, MI
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will become large, indicating that the removed node is important for the prediction. The

feature mask can be explained in a similar way. The correctness of this model has been

thoroughly verified in [179].

Though the explanation technique can help identify the important nodes and features

for training, unfortunately, it is infeasible to run the explanation technique directly for

DGT, mainly because of the following two challenges:

Challenge 1: The original explanation is not designed for a subgraph. We seek to find out

a technique that can help us interpret the importance of remote nodes and sub-features

upon a local subgraph, so that we can fetch the more important information and reduce

the “unimportant” communication in DGT. However, the entity for which the explanation

technique works is one single node in the graph or all nodes that have the same labels,

rather than all nodes in the subgraph that are attached with different labels as expected.

Directly using such technique is not feasible for our problem. A proper transformation

of the subgraph is needed such that the transformed graph both preserves the original

subgraph structure information and can be applied with explanation.

Challenge 2: The original explanation training process is offline. The original explanation

technique operates offline: by inputting a trained GNN model and the prediction upon

the node to be explained, the explanation process trains an explanation module iteratively

and finally outputs the importance of the nodes and features. Clearly, DGT requires on-

line explanation during training to guide its sample strategy. Further, even with online

explanation the training process upon the explanation module may contend resources

and hence affect the original GNN training performance. Therefore, it is necessary to

parallelize the explanation process with GNN training while incurring minimal system

overhead. Besides, the online explanation may require tensor synchronization among

workers. As mentioned in observation 3, we should reduce such heavy synchronization

as much as possible.
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Figure 3.3: DGS overview. DGS covers two stages (preprocessing and explanation-guided
training stages) and has six operations (❶-❻) for training.

3.2 Design

3.2.1 DGS Overview

DGS consists of two stages, namely preprocessing stage and explanation-guided training

stage. Figure 3.3 shows an overview of DGS from the perspective of a worker.

(1) Preprocessing stage: When a job is submitted, a DGS worker manages to construct an

explanation graph (❶) based on its assigned partitioned graph and generates the explana-

tion module in CPU. The generated explanation graph is then transmitted into the expla-

nation module for the latter online explanation (❷). Besides, the worker is also responsible

for some conventional DGT preparations such as communication setup and model con-

struction.

(2) Explanation-guided training stage: During training, the k-hop sampler initiates with

a pre-defined neighbor sampling strategy (e.g., random sampling [66] or importance sam-

pling [43]). The sampler requests and gathers sampled node features. It then attaches

them to the generated computation graph, and transmits all required minibatch data to

GPU for GNN training in each iteration (❸). After every Tex iterations, DGS updates the
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GNN model duplicated in the explanation module using the latest snapshot of the train-

ing model, and infers the prediction of all nodes within the subgraph based on the model

(❹). Note that we do not directly infer the predictions in GPU and then transfer out to

CPU, as the size of GNN models is far smaller than the subgraph’s node features, thereby

reducing the transfer between CPU and GPU. Besides, the inference process in CPU is

quick enough to satisfy our expectations. The explanation module in CPU then trains two

masks, i.e., sampled node mask (SN) and sampled feature mask (SF), given the node pre-

dictions and the loss function it predefined (in order to maximize MI between nodes) (❺).

After the explanation module training is finished, SN and SF are transmitted to the k-hop

sampler and interpreted to update sampling strategy (❻). The above operations repeat

until the end of the training process.

3.2.2 Explanation Graph

As described in §3.1.5, current explanation technique [179] only supports explanation

upon one node or a set of nodes that have the same labels, rather than all nodes in the

subgraph as expected. Therefore, we should construct an explanation graph based on the

given partitioned graph such that it can preserve the original graph structure informa-

tion, especially the relationship between the local graph and remote nodes. We expect the

explanation graph to have the following properties:

• Expressive graph structure: The explanation graph should be expressive to represent

the relationship between local subgraph and remote nodes.

• Fast embedding interpretation: The operation for interpreting the predictions from the

original graph toward the explanation graph should be fast. This is because such inter-

pretation should be operated frequently (per Tex iterations), hence a heavy interpreta-

tion may become a severe burden and degrade the performance.

We leverage graph pooling techniques [173, 181] and knowledge of graph partition-

ing [88] to achieve the above properties. Graph pooling is a popular technique used in

GNN tasks, especially in graph classification tasks [181], to predict the label associated

with the entire graph. It uses the generated node embeddings to encode the coarse-

grained graph structure with a pre-defined differentiable pooling approach. As shown
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struction is based on hierarchical pooling but leverages classical graph partitioning and
simplified aggregation for efficiency.

in Figure 3.4, there are two conventional types of pooling manners, namely, (i) global pool-

ing all the node embeddings together, e.g., using a simple summation/average or neural

network that operates over the whole graph; and (ii) hierarchical pooling node embed-

dings to a set of clusters, with each level training a dedicated pooling neural network.

The hierarchical approach usually demonstrates better accuracy improvement [181],

but at the cost of complex cluster assignment and sophisticated neural network layer.

Leveraging graph partitioning, we adopt hierarchical pooling in an efficient way. We uti-

lize the principle of balanced edge-cut for graph partitioning to cluster nodes, and simply

employ the average pooling approach to encode the subgraph with local nodes’ embed-

dings. Since classical partition algorithms such as METIS [88] are already capable of cap-

turing community structure from graphs, we explicitly utilize the partition result so as

not to introduce extra clustering overhead. Specifically, we identify the node type (local

nodes and remote nodes), shrink all local nodes (i.e., the community recognized by parti-

tion algorithm) into one subgraph node vG, and construct links between it and all remote

nodes. Besides, we add a self-loop edge toward vG to guarantee that the node can help

explain itself during explanation. While the average pooling operation upon embeddings

is simple, recent works [173] and our evaluation results (see §3.4.2) demonstrate that the

approach is sufficient for our expectation.
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3.2.3 Online Explanation

In this subsection, we introduce the online explanation which helps us process the offline

explanation technique in an online mode. We first describe the module plug-in designed

to integrate the explanation module in DGS framework, and then elaborate the online

explanation process in detail.

Module Plug-in. We directly employ the explanation module presented in [179], and

use the output masks, i.e., node mask (SN) and feature mask (SF), to update our sampling

strategy. As introduced in §3.1.5, these masks represent the importance of nodes and

features upon the subgraph node vG induced in the explanation graph. DGS interprets

SN and SF into two probability tensors, SN (sampled nodes) and SF (sampled features),

based on the node mapping between the original graph and explanation graph. The value

of each tensor in one dimension ranges between 0 and 1 and represents the importance of

a remote node or a feature dimension. Thereafter, DGS is able to identify the important

remote nodes and features leveraging these tensors, and sample them with built-in GNN

system APIs and user-defined sampling values. As it may incur bias because we only

sample remote nodes but remain all local nodes for GNN computation, we add ϵ (em-

pirically ranging from 0 to 1/10 of the total sampled number) as a deviation towards the

number of local sampled nodes and remote sampled nodes while remaining the number

of total sampled nodes unchanged.

Online Explanation. The online explanation algorithm of DGS is described in Algo-

rithm 1. During training, the main training process operates in GPU, and the explanation

process operates in CPU to avoid GPU contention.

In the training process, the sampler first performs sampling to generate a computation

graph of each mini-batch at the beginning of every iteration. Initially, it employs a pre-

defined classical neighbor sampling strategy (line 5-6) which operates only in the first Tex

iterations, and switches to our distributed sampling if SF and SN are set by explana-

tion process (line 7-8). During distributed sampling, it fetches top-N f sub-features with

respect to SF , from the sampled nodeset regarding the probability tensor SN with de-

viation ϵ, and generates the sampled minibatch computation graph. DGS then transmits

the computation graph from CPU to GPU to instantiate distributed GNN training process
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Algorithm 1: Online explanation algorithm (a per-partition view)
Input:
partition id i, subgraph partition Gi, explanation graph Ei, number of GNN layer
K, feature dimension f , node feature Xi, node predictions hi, node sampling size
Nn, node sampling deviation ϵ, feature sampling rate N f , sampling update period
Tex, explanation epoch TE, loss threshold L, explanation module FE, initial model
w0

Output:
trained model wT

1 begin
2 for t = 1...T do
3 do in parallel

// Training process
4 for each batch do
5 if not set SN or SF then
6 Use conventional sampling strategy;

7 else
8 Fetch sampled nodeset with top-N f sub-features according to

SN , ϵ, and SF from remote workers;
9 Construct K-layer computation graph;

10 Process GNN computation; ▷ in GPU
11 Process AllReduce to share gradients;
12 Update wt;

// Explanation process
13 for every Tex batches do
14 Update latest model wt as w0

E; ▷ in CPU
15 Inference node predictions hGi and interpret to hEi in Ei;
16 Update XEi in Ei;
17 for te = 1...TE do
18 loss = FE(Ei, XEi , hEi , pn, p f , wte

E );
19 if loss ≤ L then
20 break

21 Update FE, wte
E ;

22 Update SN and SF ;

(line 9-12). The above operations iterate over time.

In the explanation process, the explanation module pulls the latest model from GPU

every Tex iterations, and updates its internal GNN model to infer node predictions (line

14). It then interprets the predictions and features based on the embedding interpretation
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described in §3.2.2 (line 15-16). Note that the pulled model is the latest model that gen-

erates a minimal loss, indicating a more correct node and feature masks to be explained.

To avoid GPU contention with the main training process, the explanation module FE is

trained in CPU and generates explanation loss epoch by epoch (line 17-21). If the loss

is below a pre-defined threshold L, the explanation process terminates and updates SN
and SF to guide future distributed sampling (line 22). Otherwise, DGS updates FE and

wte
E , and loops the explanation training process until the end of TE epochs. Eventually, the

explanation process terminates when the training process finishes.

3.3 Implementation

We implement DGS on top of DGL [196], a popular open-source framework for DGT.

We use DGL as a distributed framework for inter-worker message exchange and a graph

propagation engine for graph-related operations, and use PyTorch [127] for neural net-

work execution and model synchronization.

We extend DGL in multiple ways to support DGS design. First, we adopt DGL’s

probability-based sampling API and reuse its k-hop graph sampling service to achieve

our sampling framework. We assign an appropriate tensor, i.e., the tensor interpreted

from SN (§3.2.3) to the service such that we can interpret the explanation toward DGS

sampling strategy, which can then be executed in all corresponding workers.

Second, we add the feature selection function in DGL to support fine-grained feature

sampling. We extend DGL’s KVStore push/pull handler to support extracting the sub-

tensors given the dimension and selected index in the pull requests. With this extension,

the extracted subtensors can be replied via RPC library. We also extend the feature se-

lection function in DGL’s functional components, e.g., DistGraph and DistTensor, for

compatibility.

For system optimization, we use sysv_ipc [2] (a high-performance IPC library) to ex-

change the updated model and masks between processes. To minimize the IPC overhead,

we use shared memory among processes to avoid extra memory copy. We pre-register

shared memory to be used for training, and load/store updated objects when necessary

during training.
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3.4 Evaluation

We evaluate DGS over several real-world graphs and compare it with state-of-the-art sam-

pling algorithms. Overall, our results show that:

• DGS accelerates the training process by 1.25×-4.01×, and reduces the communication

cost by up to 28.3%. The benefits DGS brings up increase with cluster size.

• DGS achieves almost the same final accuracy as full-batch training and without accu-

racy loss.

• DGS demonstrates its ability to explore complex GNN models against other sampling

algorithms in DGT.

Experimental Setup: We evaluate DGS upon a GPU cluster with 4 physical servers, each

equipped with 2 Tesla V100, 40 CPU cores (2.4GHz Intel Xeon Gold 5115), 128 GB RAM,

and 2 Mellanox ConnectX5 NICs. The servers are interconnected via 4 Mellanox SN2100

switches running Onyx 3.7.1134 operating system. We virtualize an 8-node cluster by

separating two docker containers at each server, where each container is equipped with

one dedicated GPU, 20 CPU cores, 64GB RAM, and 10Gbps virtual Ethernet interface1.

All servers run 64-bit Ubuntu 18.04 with CUDA library v11.0, DGL v0.6.1, and PyTorch

v1.10.1.

Baseline: We choose several state-of-the-art sampling algorithms for comparison. Ran-

dom sampling [66] performs random selection upon neighbors, which is the default sam-

pling algorithm adopted in DGL. FastGCN [43] interprets graph convolutions as integral

transforms and uses Monte Carlo approaches for importance sampling. LADIES [199]

adopts a layer-wise sampling algorithm which considers the previously sampled nodes

for calculating layer-dependent sampling probability. ClusterGCN [45] exploits the graph

clustering structure and allows each worker to independently train GNN model upon its

assigned subgraph.

1We use SR-IOV to separate the resource of physical NIC. [54] shows that it achieves nearly the same
performance as the non-virtualized environments.
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Reddit Ogbn- Amazon Ogbn-
products papers

Nodes 232.9K 2.45M 1.60M 111.1M
Edges 114.6M 61.86M 132.2M 1.616B

Features 602 100 200 128
Classes 41 47 107 172

Avg. Deg 984.0 50.5 82.7 29.1

Table 3.1: Graph datasets used in our evaluation.

Note that except Random, all other works are open-sourced for single machine only234.

Therefore, we modify the three algorithms to process distributedly based on the example

code of DGL5. Such modification only helps process the algorithm in a distributed manner

and has no effect on the final accuracy. As ClusterGCN does not require feature exchange

between workers and hence always achieves linear throughput, we only compare with it

in terms of accuracy (§3.4.2).

Datasets: Table 3.1 lists four real-world graph datasets that we used in our evaluation,

including Reddit [66], a dense online discussion forum dataset, Ogbn-products [71], an

undirected product co-purchase graph, Amazon [185], a multi-label amazon co-purchasing

network, and Ogbn-papers [71], a billion-edge directed citation graph. We run multi-class

classification tasks on Reddit, Ogbn-products, and Ogbn-papers, and binary classification

tasks on Amazon.

Models & Metrics: We evaluate DGS with three representative models: GCN (Graph

Convolutional Network) [91], GraphSAGE [66], and GAT (Graph Attention Network) [149].

We use the default model hyper-parameters as [66], i.e., 2 layers and 16 hidden dimension

per layer.

Parameters Setup. We set the batch size to 1024 and the sampling strategy with fanout

{64, 64} (adopted in [199]) in all experiments. For DGS-related parameters, we set the node

2https://github.com/acbull/LADIES/blob/master/pytorch_ladies.py#L95

3https://github.com/acbull/LADIES/blob/master/pytorch_ladies.py#L127

4https://github.com/dmlc/dgl/tree/master/examples/pytorch/cluster_gcn

5https://github.com/dmlc/dgl/blob/master/examples/pytorch/graphsage
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sampling size Nn at each layer the same to {64, 64}, the node sampling deviation ϵ to 0.1,

the feature sampling rate N f to 0.85, the sampling update period Tex to 30, the explanation

epoch TE to 50, and the loss threshold L to 0.01 by default. The above settings ensure that

the explanation module converges in our experiments.

3.4.1 Overall Performance

Due to the limited memory in each node (64 GB), we are not able to run large graphs

like Ogbn-papers in small-scale clusters. Hence, we first present the scalability of each

sampling algorithm over other 3 datasets. Then, we show the training performance over

Ogbn-papers in an 8-node cluster. Besides, we also show the communication cost per

epoch.
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Figure 3.5: Throughput comparison with existing sampling-based methods in 3 GNN
models over Reddit.
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Figure 3.6: Throughput comparison with existing sampling-based methods in 3 GNN
models over Ogbn-products.

Scalability. The scalability results are shown in Figure 3.5, Figure 3.6, and Figure 3.7. We

find that DGS outperforms all baselines in all settings with the speedup of 1.10×-3.24×,

and the benefit increases with the cluster size. In general, LADIES performs worst among
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Figure 3.7: Throughput comparison with existing sampling-based methods in 3 GNN
models over Amazon.

the three baselines due to the frequent probability synchronization of LADIES, as stated

in §3.1.4. Specifically, LADIES performs as much as 3.24×worse than DGS over Amazon,

as the number of synchronizations increases with large graphs. Random and FastGCN

do not perform such synchronization during training: Random just samples nodes uni-

formly at random; FastGCN pre-computes and synchronizes the probability tensor before

training, and then remains the value unchanged throughout training. Hence, the two

methods perform better and achieve comparable performance in all experiments. How-

ever, we still see that they perform up to 1.25× worse performance than DGS because

of their communication-inefficiency: without the locality awareness of neighbor nodes

and adopting coarse-grained node-level sampling only, the two methods bring up extra

and redundant communication, which degrades the global training throughput. For DGS,

though it needs to synchronize the probability tensor when necessary, its update period is

much coarser: one-time update every Tex = 30 iterations versus the layer-size× updates

per iteration in LADIES. In evaluating performance improvements across different GNN

models, we observe that DGS yields higher efficiency in GraphSAGE and GCN than in

GAT. This is because: 1) GAT model is more computation-intensive; 2) the improvement of

communication is marginal when in small clusters, leaving limited opportunities for DGS

to optimize training. Overall, with the communication-efficient mechanisms adopted in

DGS, specifically, both node- and feature-sampling, and the coarse-grained synchroniza-

tion mechanisms, DGS gains more benefit for training than all other algorithms. We expect

that DGS can benefit the training process with more workers involved in.

Ogbn-papers. The training performance is shown in Table 3.2. Overall, DGS achieves

1.07×-4.02× speedup in 3 GNN models over Ogbn-papers. We find that DGS outperforms
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LADIES Random FastGCN DGS Speedup

GraphSAGE 10.43 31.42 36.72 41.57 1.13-3.99×
GCN 10.46 30.71 39.19 42.00 1.07-4.02×
GAT 9.580 28.38 34.76 38.09 1.09-3.98×

Table 3.2: Overall throughput (Knodes/s) when training over Ogbn-papers.

Method Reddit Ogbn-products Amazon Ogbn-papers
Sampling-based 11.030 15.168 24.896 8.302

NS-only 9.312 12.962 20.390 7.057
FS-only 10.026 14.119 22.194 7.809

DGS 8.377 11.445 17.843 6.236

Table 3.3: Communication cost (GB) per epoch. NS-only represents DGS adopts node-
sampling only. FS-only represents DGS adopts feature-sampling only. Note that the com-
munication cost of Ogbn-papers is small because in fact only a subset of Ogbn-papers is
involved in training.

all baselines with the speedup of 1.07×-4.02×. DGS reduces more redundant communica-

tion costs than other algorithms with the help of the communication-efficient mechanisms.

We expect that DGS can benefit training over even larger graphs.

Communication Cost. We also present the communication cost during training. We

log the counter of the NIC to obtain the communication cost/epoch result when train-

ing GraphSAGE over three datasets in an 8-node cluster. We also deep-dive the node-

sampling (NS-only) and feature-sampling (FS-only) mechanisms.

The results are shown in Table 3.3. DGS reduces the communication cost by 24.05%,

24.55%, 28.33%, and 24.89% for Reddit, Ogbn-products, Amazon, and Ogbn-papers, re-

spectively, which demonstrates the communication efficiency of DGS. We also show the

communication cost with NS-only and FS-only. As expected, the result shows that node-

sampling is more useful for communication reduction, as node-sampling may eliminate

the whole node feature transmission while feature-sampling only reduces a subset (15%)

of it.
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Method Reddit Ogbn-products Amazon Ogbn-papers

Full-Batch 95.17 70.08 62.62 43.64
Random 93.97 69.07 61.16 41.24

Random+RF 93.69 68.02 58.06 39.41
FastGCN 95.00 68.30 61.28 41.41

FastGCN+RF 94.91 67.73 58.76 39.04
LADIES 95.05 69.37 62.28 41.62

LADIES+RF 94.70 68.77 59.24 40.86
ClusterGCN 92.49 67.86 62.35 26.19

ClusterGCN+RF 92.12 67.48 57.37 24.72

DGS

# of workers 2 4 6 8 2 4 6 8 2 4 6 8 8

Tex = 30 94.57 94.80 95.02 95.03 69.88 69.23 69.51 69.77 62.36 62.33 62.38 62.35 41.86
Tex = 60 94.36 95.09 95.09 95.05 69.01 69.02 69.03 69.02 62.41 62.43 62.42 62.44 40.72
Tex = 90 94.80 95.06 95.00 94.95 68.98 68.95 69.03 68.98 62.30 62.28 62.20 62.34 40.77

Table 3.4: Comparison of test accuracy (%) on 4 datasets, where DGS under different
numbers of partitions are shown. The accuracies of full-batch and the highest accuracy
of DGS in terms of # of workers are in bold.

3.4.2 Final Accuracy

Next we present the final accuracy. We compare DGS with baselines, including Clus-

terGCN, in terms of final accuracy when training GraphSAGE over 4 datasets. We add

each baseline with a random feature sampling rate 0.85, noted as +RF, to show the per-

formance of our feature-level sampling. For DGS, we show the results by varying the

number of partitions6 and Tex as the two parameters may affect the final accuracy in DGT.

We also add the full-batch training (mini-batch without sampling) accuracies as our target

accuracies.

The results are shown in Table 3.4. The full-batch accuracies are: 95.17% in Reddit,

70.08% in Ogbn-products 7, 62.62% in Amazon, and 43.64% in Ogbn-papers. As expected,

LADIES achieves the highest accuracies among baselines in almost all datasets due to its

adaptive layer-wise importance sampling. FastGCN has lower accuracies than LADIES.

ClusterGCN behaves differently in different datasets: in Amazon it achieves as much as

62.35% comparable accuracy as LADIES, but 92.49% and 26.19% low accuracy in Reddit

and Ogbn-papers. It is because ClusterGCN depends heavily on the graph structure and

the partition strategy may not be optimal. The accuracies of Random are the worst as it

6For Ogbn-papers, we only train it over 8-node due to memory constraint.
7The accuracy is different from the result reported in [1] because we use 2-layer GraphSAGE and they use
3-layer.

31



does not recognize the importance of each node. Besides, all baselines with RF face ac-

curacy loss, because the random feature sampling cannot identify the important features

during training and hence may sample the important ones and degrade the accuracy. DGS

achieves similar accuracies as full-batch. As the table shows, DGS has no preference re-

garding the number of workers. This is because DGS adopts METIS partition which shows

great ability in capturing graph community information regardless of the number of par-

titions. Besides, we find that DGS achieves the highest accuracy in most cases when Tex is

moderately 60, rather than what we expected Tex = 30. We assume it is because the fre-

quency of strategy may also affect the final accuracy, and a frequent update may adversely

prevent the model from converging. Moreover, with infrequent updates upon sampling

(Tex = 90), DGS achieves lower accuracy compared to others, but still outperforms most

baselines.

3.4.3 Impact of GNN Parameters

Next we present the effect of several GNN parameters, i.e., partitioning strategy, feature

size, and number of layers, to demonstrate the ability of DGS to explore complex GNN

models in DGT. By default, we conduct all experiments when training GraphSAGE over

Reddit in an 8-node cluster.

We first evaluate the effect of partitioning strategy. We adopt chunk-based strategy [198]

and random strategy over 4 datasets and compare DGS with baselines. Note that we omit

LADIES here because it performs far worse than others.
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Figure 3.8: Impact of Partitioning Strategy.
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Impact of Partitioning Strategy. Figure 3.8 shows the throughput results (normalized by

the throughputs of Random sampling). We see that DGS always achieves the best among

all, with the average speedup of 1.44× and 1.45× in chunk-based and random settings,

respectively. The results demonstrate that DGS is able to accelerate DGT via reducing

communication, regardless of the choice of partition strategies.
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Figure 3.9: Impact of feature size and number of layers.

Impact of Input Features. Next we evaluate the effect of input feature size. We vary the

input features of Reddit from 32 to 1024-dimension and compare DGS with baselines. We

use epoch time as the metric.

Figure 3.9a shows the throughput results. We see that DGS outperforms baselines in

all settings, with the speedup ranging from 2.2% to 54.89%. Especially when feature size

reaches 1024, DGS achieves 11.6%-51.03%× throughput speedup. We remind the readers

that the communication cost is proportional to the size of input features, hence the com-

munication ratio increases and shifts the training bottleneck from computation to commu-

nication. Without the awareness of nodes’ locality in Random, FastGCN, and LADIES, the

extra communication introduced by “unimportant” nodes from remote workers can result

in significant communication overhead. DGS, however, takes into account the locality of

nodes and reduces communication leveraging both node- and feature-level sampling.

Impact of Layers. We also evaluate the effect of the number of GNN layers. We create

variants of GraphSAGE with 2, 3, and 4 layers and reuse the sampling strategy at each

layer, i.e., sample 64 nodes per layer. We use epoch time as the metric.

Figure 3.9b shows the throughput results. Compared to the increase of input features,
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the increase of layers affects GNN training more severely. It is because the increase of

layers affects not only the communication volume among workers for more hop neighbor

nodes’ features, but also the computation workload of GNN, which ultimately limit the

exploration for more complex but powerful GNN models. While DGS only optimizes the

communication part, it achieves the lowest epoch time in all settings, with the speedup

of 35.5% -56.8% in 4-layer experiments. Specifically, the epoch time of DGS increases

gracefully compared to other baselines, indicating that DGS is capable of facilitating the

exploration of deeper GNN model.

3.4.4 Sensitivity Analysis

We evaluate parameters of DGS, N f and ϵ in terms of accuracy. We vary the value of N f

from 100% to 30%, the value of ϵ from 0 to 1/10, in GraphSAGE training over Reddit.
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Figure 3.10: Sensitivity analysis of DGS parameters.

Impact of feature sampling rate N f on accuracy. Figure 3.10a shows the results of N f . We

find that N f has no effect in accuracy from 100% to 70%, but starts to degrade the accuracy

starting from 60% (from 95.17% to 94.69% and lower). Such phenomenon echos our mo-

tivation results in §3.1.4: the graph data is sparse and has various redundant information

(30% or more information can be reduced without hurting accuracy).

Impact of node sampling deviation ϵ on throughput. Figure 3.10b shows the results

of ϵ. We find that in general, ϵ has no effect on accuracy from 0 to 1/10. This is because

METIS partition results in a minimal relationship of local subgraph with remote nodes.
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Hence the bias which may occur in DGS that prefer local nodes to remote nodes has no

effect upon the final accuracy.

3.4.5 Resource Utilization of Online Explanation

Finally, we measure several resource utilizations of DGS when training with and without

online explanation (OE) with GraphSAGE over Reddit. Note that we set Tex to a high

value, i.e., 2000, such that the explanation process will not be triggered during the epoch

for the w/o explanation case.

Method CPU Util. GPU Util. Memory

with OE 1380.2% 3337MB 20.4GB
without OE 1218.1% 3267MB 18.4GB

Table 3.5: Resource Utilization of Online Explanation.

As shown in Table 3.5, the CPU utilization and memory consumption with OE are

162.1% and 10.9% higher than those without OE, while the GPU utilization almost remains

the same. This is because the online explanation processes entirely in CPU and does not

consume GPU resources.

3.5 Related Work

GNN Framework. Various works have emerged to improve GNN training. For full-

graph training, NeuGraph [116] and ROC [78] process full-graph embeddings synchro-

nization layer-by-layer. As they do not use sampling during training, they may suffer

from significant device memory constraints when performing large graph training. For

mini-batch training, various frameworks [58, 60, 107, 158, 186, 196, 197] have been exten-

sively used either in academia or industry. Note that DGS can benefit all mini-batch train-

ing frameworks by reducing the communication cost.

GNN Training Optimization. Several GNN training optimizations have emerged in

recent years. GNNAdvisor [164] explores GNN input properties and proposes optimiza-

tions such as workload management and GPU memory customizations. Marius [120]
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optimizes the data movement during training with partition caching and buffer-aware

data orderings. CAGNET [147] proposes distributed-memory parallel GNN training al-

gorithms and reduces the communication costs by dividing the feature vectors into small

sub-vectors. BNS-GCN [151] explores partition-parallelism and applies a random bound-

ary sampling strategy for distributed GNN training. However, it applies sampling ran-

domly at node-level, but DGS applies sampling with explanation guidance at fine-grained

feature-level. Dorylus [146] brings serverless techniques to GNN training. It breaks down

a single training iteration into 4 stages and pipelines each partition based on the workflow

of each stage. The above optimizations are orthogonal to DGS.

3.6 Conclusion

This paper proposes DGS, a communication-efficient graph sampling framework for dis-

tributed GNN training. Its key idea is to reduce network communication cost by sampling

neighborhood information based on the locality of the neighbor nodes in the cluster, and

sampling data at the levels of not only graph nodes but also node features. DGS constructs

an explanation graph that preserves the relationship between the local graph and remote

nodes, and leverages the recently-proposed model explanation technique to design an on-

line explanation scheme that interprets the importance of nodes and features. Our eval-

uation results show that DGS outperforms existing state-of-the-art sampling algorithms

by up to 1.25×, and reduces the communication cost by up to 28.3% while preserving the

final accuracy.
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CHAPTER 4

G3: A SCALABLE AND EFFICIENT
FULL-GRAPH GNN TRAINING SYSTEM

Graph-structured data are natural representations of many real-world applications such

as social networks and knowledge graphs. Recent works extend deep neural networks

(DNNs) to capture structural information in graphs [66, 91, 149, 173]. This new family of

DNNs, known as graph neural networks (GNNs), achieves state-of-the-art performance

in machine learning tasks such as node classification [170, 176] and recommendation sys-

tems [180].

The reason behind GNN’s high expressiveness is that GNNs learn from the relation-

ships between data samples while traditional DNNs are trained over individual samples

with no structural information. Figure 4.1 shows GNN computation process that includes

neighborhood aggregation operations and standard NN operations: in each GNN layer, one

node’s new embedding is calculated by first aggregating its neighbors’ embeddings from

the previous layer, and then applying NN operations. This computation process repeats

when a node travels through each GNN layer, capturing information from the multi-hop

neighborhood of the node.

Training GNNs over billion-edge graphs is time-consuming because of the neighbor-

hood aggregation operation. The common practice to scale out DNN training over large-

scale input data is data parallelism [93]. Data parallelism splits data into multiple in-

dependent partitions, which can be trained on different workers in parallel. However,

data parallelism can no longer be applied to GNN training directly because the neigh-

borhood aggregation operation takes neighboring data samples that may reside on a re-

mote worker. Therefore, when data parallelism splits an input graph into partitions,

cross-partition neighboring data samples create large and interleaved computation depen-

dencies among these partitions, making the partitions dependent on each other in data-

parallel training. The dependency pattern, which is determined by input graph structure
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rather than the GNN model itself, complicates the worker synchronization scheme and

poses system challenges to efficiently train GNN models in parallel.

Due to the large and interleaved dependencies among partitions in data parallel train-

ing, existing GNN systems are difficult to scale to a large number of workers. A widely

adopted approach in current GNN systems involves replicating out-of-partition neigh-

boring node data to a worker in order to train GNN over the graph partition indepen-

dently [60,196], causing duplicate computation and communication systematically. Some

systems such as DGL [158], P3 [60], and BGL [113] use sampling-based training methods

to mitigate the overhead by sampling only a small part of the graph during each train-

ing iteration. However, sampling operations can generate biased results [43, 45] and the

duplicate work still exists and grows exponentially to the number of GNN layers [78].

Recently, full-graph training (i.e., no sampling used) [122,129,151,152] has been a pop-

ular topic in the machine learning research community for its better performance. While

GNN systems including ROC [78] are able to support full-graph training, similar to the

methods above, their evaluations still show limited scalability due to imbalanced and

duplicate workload, especially when training in large clusters or with deep GNN mod-

els [32,99]. Moreover, they are not built for large input graphs because the workers needs

to load the entire graph into GPU memory for processing, which is not possible when

processing billion-edge graphs.

In this paper, we present G3, a distributed system that can efficiently support full-

graph training of GNNs at scale on billion-edge graphs and without accuracy compro-

mise. G3 proposes GNN hybrid parallelism to eliminate duplicate work and effectively

manage large and complex computation dependencies between workers (§4.2). Further-

more, G3 uses hybrid parallelism to scale out training by dividing the process at the per-

node level and sharing intermediate results in a pipelined fashion among peers.

However, GNN hybrid parallelism is not free, as it comes with higher system over-

head due to potential stragglers during layer-wise synchronization and more frequent

data sharing. Therefore, to maintain a maximum degree of parallelism, G3 distributes

balanced computation and communication workload across workers by dividing the in-

put graph with a locality-aware iterative graph partitioning algorithm (§4.3). G3 also

overlaps communication with computation using a multi-level pipeline scheduling algo-
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rithm (§4.4) that implements both inter- and intra- layer pipelines with an adaptive bin

packing strategy. In contrast to pipeline parallelism used in prior works [60, 124, 146]

which comes at the cost of accuracy loss, G3’s method does not compromise model accu-

racy.

We evaluate G3 on large datasets with representative GNN models and compare it

with state-of-the-art GNN systems. Our results show that G3 can achieve up to 2.24×
speedup in a 16-node cluster, and better final accuracy (∼6% higher) over prior works. Be-

sides, we demonstrate G3’s ability in exploring complex GNN models and high-dimensional

graph datasets: it can achieve up to 25.9× speedup with a 4-layer deep GNN model and

1.94× when training over graphs with 256-dimensional input features.

Overall, this paper makes the following contributions:

• G3 introduces GNN Hybrid parallelism to handle large and complex computation de-

pendencies, enabling scalable GNN training on large graphs without accuracy loss.

• G3 accelerates the training process by balancing workloads across workers with locality-

aware iterative graph partitioning, and overlapping communication with computation

using multi-level pipeline scheduling.

• We implement a G3 prototype and conduct comprehensive experiments over large

graphs, showing that G3 achieves as much as 2.24× speedup in a 16-node cluster, and

better final accuracy over prior works.

4.1 Background and Motivation

We first review the computation process of GNN training and then demonstrate the scala-

bility issues in distributed GNN training of prior work through analysis and experiments.

4.1.1 Graph Neural Networks (GNNs)

GNNs are a family of neural networks that learn node representations from graph-structured

data (i.e., nodes and links) [66, 91, 149, 173]. The key idea is to aggregate information from

39



neighbors following the graph structure, and perform embedding transformations layer-

by-layer.

GNN Computation in One Layer. Figure 4.1 shows the process of GNN computation on

the blue node in GNN layer-k, which consists of two stages: neighbor aggregation stage

and NN operations stage. In the aggregation stage, layer-k aggregates the node’s neigh-

boring nodes’ embeddings calculated from the preceding layer (if layer-1, the embeddings

are the corresponding nodes’ input features). Afterwards, layer-k applies standard DNN

operations such as matrix multiplication in Graph Convolution Network (GCN) [91], to

the aggregation result, and finally outputs the layer-k embedding for the blue node. All

other nodes in the graph process the same above computation in layer-k with their own

neighbors.

Formally, the above computation process of GNN layer-k is expressed as follows:

a(k)v = Aggregate(k)({h(k−1)
u | u ∈ N (v)})

h(k)v = Update(k)(h(k−1)
v , a(k)v )

where h(k)v denotes the node embedding of node v in the GNN layer-k, and N (v) denotes

neighbors of v. For each node v in layer-k, Aggregate first outputs a(k)v by gathering the

embeddings of its neighbors h(k−1)
u∈N (v) with an accumulation function such as mean or sum,

then Update computes the node’s new embedding from its previous embedding h(k−1)
v and

the aggregation result a(k)v .

Forward/Backward Propagation. For an L-layer GNN model, the above computation

iterates from layer-1 to L among all nodes in the forward propagation. Note that after the

layer-L computation, the embeddings h(L)
v capture information for all neighbors within

L hops of v, and can be used for downstream tasks such as node classification and link

prediction. Next, all nodes’ h(L) with their labels are fed to a loss function to generate the

loss. With the loss, gradients are then calculated from layer-L to 1 following the chain rule

in the backward propagation. Finally, the optimizer updates the GNN model with the

gradients attached to it, ending the GNN training for one iteration.
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Figure 4.1: Computation of one node in layer k by first aggregating its neighbors’ embed-
dings from previous layer k− 1, then applying NN operations.

As shown in Figure 4.1, GNN’s propagation between consecutive layers is not only

over the same data sample but also across different samples due to the neighborhood

aggregation operations. These cross-data-sample propagation paths create computation

dependencies between data samples.

4.1.2 DNN Parallelization Methods

Data, model, and pipeline parallelism are the most common parallelization methods used

in distributed DNN training [63,75,101,156,157,163]. However, we cannot directly apply

these methods to GNN training due to its unique aggregation operations (§4.1.1). Here

we briefly introduce how they can be adopted and implemented in GNN training, as well

as their disadvantages that are specific to the GNN training process.

Data Parallelism. Data parallel training is widely implemented in current GNN sys-

tems [78, 116, 196, 197] as large graphs may not be able to fit in a single GPU memory and

hence must be partitioned and processed in a distributed manner. Implementing data

parallelism in GNN needs to partition the input graph. However, these graph partitions

cannot be independently processed, due to the computation dependencies between these

partitions created by GNN’s neighbor aggregation operations. Existing systems adopt

methods such as cross-partition neighbor replication to satisfy these computation depen-
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dencies. However, as we show in §4.1.3, these methods introduce system overhead and

lead to scalability limitations.

Model Parallelism. In DNN training, model parallelism partitions a model across work-

ers. The worker that holds the input layer of the model is fed with the training data,

followed by intermediate results being transmitted sequentially across workers. As the

training workflow is still serialized between workers, the advantage is not speeding up

the training process, but reducing the memory footprint of a huge model. However, since

GNNs typically use small models which commonly have only 2 to 5 layers, model paral-

lelism is not used to accelerate training in previous GNN systems.

Pipeline Parallelism. In pipeline parallelism, the DNN model is partitioned and dis-

tributed across workers as in model parallelism. The training data is also split into batches,

which are then streamed into the first worker. In the pipeline, every worker computes out-

put activations or gradients for a batch and immediately propagates them to the down-

stream worker, which hence keeps workers busy and improves workers’ utilizations.

While pipeline parallelism assumes that batches are entirely independent to process [124],

this assumption no longer holds in GNN training. When a worker processes a batch,

it needs to re-build a subgraph from the batch, which needs to include multi-hop out-

of-batch neighbors for neighborhood aggregation operation in GNN, causing computa-

tion overhead due to duplicate work across workers. A study [52] shows that adopting

pipeline parallelism in GNN training leads to significant efficiency degradation: training

time increases by 5× in a 4-node cluster compared to the single GPU result.

4.1.3 Training GNNs on Large Graphs

Training GNNs over real-world graphs with tens of millions of nodes and billions of edges

poses challenges in hardware capacity and overall efficiency. We put existing methods

into two categories and summarize their techniques as follows.

Sampling-based GNN Training. Some GNN training methods use neighbor sampling

strategies that down-sample nodes’ neighbors in the neighborhood aggregation operation

to reduce computation cost [43,66,153,180,185], and hence speed up the training process.

However, as observed in previous works [73, 78], these techniques often ignore a large
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fraction of neighbors and thus may suffer from accuracy loss. For example, a classical

GNN model, GraphSAGE [66], samples and aggregates only a small number (10 to 25) of

neighbors for each node. Moreover, the duplicate work still exists and grows exponen-

tially to the number of GNN layers, making neighbor sampling less efficient when train-

ing deep GNN models [32, 99]. A recent work [159] also reports that the sampling step is

bounded by the I/O throughput of the storage and becomes the bottleneck limiting GPU

utilization.

Besides, some sampling-based GNN training methods are used together with graph

partitioning when the input graph is too large to fit into a single device. In this case, the

result may suffer from both accuracy loss and scalability limitation as well [158].

Full-graph GNN Training. Efficient full-graph GNN training is especially challenging

on large graphs as it is both computation-intensive and memory-intensive. Therefore, to

improve overall efficiency, many existing GNN systems [78, 116, 196, 197] leverage data

parallelism by partitioning and distributing the input graph to multiple workers that col-

laboratively train the same GNN model. However, the cross-partition computation de-

pendencies in data parallel training make workers dependent on each other. These com-

putation dependencies, determined by the input graph structure, are usually large and

complex in real-world graphs. To satisfy the dependencies, two types of schemes are pro-

posed in previous works:

• Layer-wise communication barriers. NeuGraph [116] implements layer-wise commu-

nication barriers for global synchronization of intermediate results. This communica-

tion introduces extra overhead and can be straggled by unbalanced workloads.

• Cross-partition neighbor replication. The method of loading all out-of-partition neigh-

boring node features for each worker’s assigned partition, as used in DGL [196], ROC [78],

and other systems, leads to duplicate computation and communication. This is because

the same data may be loaded and computed by multiple workers. Additionally, as

GNN training aggregates node embeddings from an L-hop neighborhood, the amount

of duplicate work increases exponentially with the number of GNN layers L.

Our experiment confirms the analysis. Figure 4.2 shows the speedup of training through-

put for ROC (results from [78]) and DGL on the Reddit dataset [66]. When the number of
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Figure 4.2: Scalability of existing GNN systems without neighbor sampling on Reddit.
Numbers are reported based on each system’s throughput on 1-node. Linear represents
the ideal speedup ratio.

workers scales from 2 to 16, the performance of DGL and ROC only increases as much as

1.4× and 3.2×, far lower than the ideal 8× speedup ratio, as represented by Linear.

Full-graph GNN training is actively researched in today’s machine learning research

community [129, 151, 159]. However, for the reasons described above, current GNN sys-

tems fall short of supporting full-graph training when high accuracy and efficiency are

desired at the same time.

4.2 GNN Hybrid Parallelism

Existing systems are less efficient in training GNNs at scale due to the complex compu-

tation dependencies created by neighbor aggregation, and the naive adoption of existing

DNN parallelization methods results in significant overhead.

We propose GNN Hybrid parallelism, a novel parallelization strategy that avoids dupli-

cate work by sharing intermediate results peer-to-peer between GNN layers.

4.2.1 GNN Hybrid Parallelism Workflow

G3 uses GNN hybrid parallelism to enable both data parallelism and model parallelism,

while also pipelines the inter- and intra-layer training process. Figure 4.3 depicts a run-

ning example on an 8-node graph with 3 workers.

To begin with, the input graph is divided into smaller partitions for training, known
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Figure 4.3: A running example of hybrid-parallel training workflow on an 8-node graph
with 3 workers. The workflow incorporates three parallel dimensions (data, model, and
pipeline). The detailed explanation on the example is in §4.2.1.

as the data-parallel dimension. In the given example, an 8-node graph is split into three

parts, each marked with a different color. After partitioning, each partition is assigned to a

separate worker, and edges connecting the partitions become computation dependencies

between the workers.

The training process continues by having each worker train its own GNN model with

the assigned partition. Once a worker completes computation on one layer, the output is

not only used as input for the next layer computation on that worker, but also sent peer-to-

peer to other workers that have dependencies on it (as demonstrated by the cross-worker

data-sharing arrows in the given example). This creates the model-parallel dimension.

In each layer, nodes are divided into smaller groups called "bins" (depicted as colored

rectangles in Figure 4.3) and processed one at a time by a worker, creating a pipeline

opportunity for overlapping computation and communication: once a bin’s computation

is finished, the worker can send its output to other workers and start processing the next

bin. These pipelines exist for both inter- and intra-worker tasks, forming the pipeline-

parallel dimension.

The backward pass is similar to the forward pass, with the difference being that the

inputs are gradients rather than node embeddings. Once an epoch is completed, the GNN

model parameters are aggregated and averaged using the AllReduce method across all

workers.
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Benefits in GNN Hybrid Parallelism. GNN hybrid parallelism enables the system to

scale with the growth of the graph size and model size for the reasons listed below.

First, Hybrid parallelism handles interleaved computation dependencies in GNN train-

ing without the need for cross-partition replication, as the model-parallel dimension shares

intermediate results peer-to-peer, reducing system overhead.

Second, Hybrid parallelism creates opportunities to overlap computation and commu-

nication in inter- and intra-layer training by packing graph nodes into bins and processing

them in pipelines.

4.2.2 System Challenges

The benefits of GNN Hybrid parallelism come with challenges that must be overcome to

fully exploit acceleration opportunities.

Challenge 1: Balanced Workload Distribution. Data parallelism is a technique that

divides a workload into small partitions to process them simultaneously. In order to pre-

vent stragglers in parallel processing, it is important to have a balanced workload in each

partition. In GNN hybrid parallelism, communication across partitions becomes signifi-

cant and it is important to balance the communication workload as well (§4.3.1). Previous

works, such as DGL [196] and NeutronStar [159], use off-the-shelf graph partitioning algo-

rithms that only balance computation workload but do not consider the added complexity

of communication in GNN training. In GNN training, simply minimizing the global edge-

cut on the input graph, like in graph processing tasks, cannot balance the communication

workload over each partition (discuss in §4.3.1). To address this issue, we formulate the

cost factors and propose a locality-aware iterative graph partitioning algorithm (§4.3) that

efficiently balances workloads across workers.

Challenge 2: Efficient Pipeline Scheduling. In GNN hybrid parallelism, workers com-

municate with each other and share intermediate results to satisfy the GNN computa-

tion dependencies across workers. To construct efficient pipelines globally that over-

lap computation and communication, the order of computation is important as it affects

the blocking time of each worker due to cross-worker dependencies. Existing methods,

e.g., HGL [64] and JasmineGraph [87], use simple FIFO strategies when processing graph

46



nodes, which does not fully utilize the opportunity to overlap communication and com-

putation. G3 tackles this problem with a multi-level pipeline scheduling algorithm (§4.4)

which proactively schedules for both inter- and intra-layer training pipelines to maximize

the chance of overlapping, with a bin packing mechanism to assign computation priority

and adapt to memory and model size.

4.2.3 Comparison with Recent Works

We note that similar ideas of GNN hybrid parallelism have been explored in some re-

cent works [60, 151]. However, existing solutions fail to fully exploit the opportunities to

reach the maximum degree of parallelism. They did not identify the challenges of high

system synchronization overhead raised by the idea of GNN hybrid parallelism. More

specifically, existing solutions (1) did not balance cross-partition communication in graph

partitioning algorithms, and (2) did not explore more efficient pipelines with minimized

waiting time by assigning different computation priorities.

G3 fully explores these challenges that are unique in distributed GNN training, presents

comprehensive optimization and implementation to address the system challenges, and

evaluates the solutions with both end-to-end and microbenchmark experiments.

Moreover, in the pipeline-parallel dimension, nodes are grouped into smaller groups

called bins and processed in pipelines. This allows G3 to adapt bin sizes to the GPU mem-

ory capacity and enables G3 to handle larger graphs, unlike full-graph training systems

like NeutronStar [159] and BNS-GCN [151] which may encounter GPU memory limita-

tions with large graphs.

4.3 Balanced Work Partitioning

In distributed GNN training, achieving a balanced workload among partitions requires

more than just equal graph nodes and global min edge-cut. In this section, we formulate

the cost factors in distributed GNN training workload and propose a locality-aware itera-

tive graph partitioning algorithm that efficiently balances these factors across workers.
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4.3.1 Cost Factors in Distributed GNN Training

Notation Description
G = (V, E) Input graph with its node and edge set
P(G, k) = k-partition result of graph G
{V1, ..., Vk} Vi represents the nodes in partition i
E(Vi) Edges in G that destine to nodes in Vi
Vremote

i Out-of-partition neighbors of partition i
dv Degree of node v from G
N(v) Neighbors of node v from G

Table 4.1: Notations and factors affecting GNN workload over a partition in Hybrid par-
allelism.

When assigning a graph partition to a worker, several graph-related factors affect the

worker’s training workload. We summarize several factors which determine the work-

load of partition Vi as follows:

• Number of nodes |Vi|, which directly contributes to the GNN computation cost.

• Number of edges |E(Vi)|, which affects the GNN computation cost due to neighbor-

hood aggregation.

• Number of out-of-partition neighboring nodes |Vremote
i |, which determines the amount

of data to be transferred out to other workers after each layer’s computation. This

is essentially the peer-to-peer communication cost in the model parallel dimension of

Hybrid parallelism.

Chunk-based graph partitioning method, used in NeuGraph [116], ROC [78] and Neu-

tronStar [159], partitions the graph into chunks that contain nodes with consecutive IDs.

While it balances |Vi|, the actual amount of workload may be highly unbalanced because

the method does not consider the total number of edge cuts, resulting in unbalanced

|E(Vi)| as well as large and unbalanced |Vremote
i |.

METIS algorithm [88], used by DGL [196] and BNS-GCN [151], can find a partition de-

cision with minimum edge-cut. However, minimizing edge-cut does not balance |Vremote
i |

for each partition i. Hence, the communication workload across workers still varies.
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4.3.2 Locality-aware Iterative Partitioning

Figure 4.4: Two stages of partitioning algorithm

The partitioning algorithm has two stages as depicted in Figure 4.4: (1) the weighted

partitioning stage that balances per-partition computation cost and minimizes global com-

munication costs. (2) the iterative re-partitioning stage that balances per-partition commu-

nication costs.

First, in the weighted graph partitioning stage, the algorithm generates a graph par-

titioning decision with a balanced computation cost among partitions while minimizing

the global communication volume. The global communication volume is defined as the

sum of each partition’s communication volume, which is determined by the number of

each partition’s remote nodes. We formalize our optimization objectives as follows:

minimize Tmax_nn = max
Vp∈P
|Vp|, (4.1)

minimize Tmax_aggr = max
Vp∈P

∑
v∈Vp

dv, (4.2)

minimize Ttotal_comm = ∑
Vp∈P
|Vremote

p |, (4.3)

where P = {V1, V2, ...} denotes the partitioning decision and Vi contains all nodes v in

partition i. Equation 4.1 and Equation 4.2 essentially balance computation cost among

partitions while Equation 4.3 minimizes global communication cost.

The objectives above formulate a multi-constraint graph partitioning problem [89]: a

vector of weights is assigned to each node, and the goal is to produce a partitioning such
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that the partitioning satisfies a balanced constraint associated with each weight, while

attempting to minimize the global communication volume (or edge-cut).

In our formulation, the balanced sum of node feature size (Equation 4.1) and the bal-

anced sum of node degree (Equation 4.2) in each partition are two constraints while we

aim at minimizing the total communication volume (Equation 4.3).

Note that even though the global communication volume is minimized by the algo-

rithm above, the communication cost of each partition cannot be balanced under the

multi-constraint graph partitioning problem setting, as it is a result of the actual parti-

tioning and hence cannot be pre-defined as a constraint.

Second, in the iterative re-partitioning stage, the algorithm swaps nodes between parti-

tions to balance the communication volume in each partition. We formalize our optimiza-

tion objective as follows:

minimize Tmax_comm. = max
Vp∈P
|Vremote

p | (4.4)

Algorithm 2: Locality-aware Iterative Partition
Data:
(1) Input Graph: G
(2) Number of Workers: n
(3) Multi-constraint Partition: PMulti(G, n) = {V1, .., Vn}
Result: Final Partition P = {V1, .., Vn}

1 begin
2 P←− PMulti(G, n)
3 while true do
4 Vmax ←− argmaxVp∈P|Vremote

p |
5 Vmin ←− argminVp∈P|Vremote

p |
6 ratio ←− |Vremote

min |/|Vremote
max |

7 if ratio is converged then
8 return P

9 vmax ←− argmaxv∈Vmax
|vremote|

10 vmin ←− argminv∈Vmin
|N(v)−Vmax|

11 Vmax ←− Vmax − {vmax}+ {vmin}
12 Vmin ←− Vmin − {vmin}+ {vmax}

The algorithm is shown in Algorithm 2. In each iteration, we first find two partitions

that have the highest and lowest number of remote nodes, denoted as Vmax and Vmin. Then
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we consider the locality in each node by picking a node vmax in Vmax which has the highest

number of remote neighbors (i.e., out-of-partition nodes in its neighborhood) and a node

vmin in Vmin which has the lowest number of remote neighbors if moved out of Vmin, and

then we swap these two nodes. The above process repeats until the difference between

|Vremote
min | and |Vremote

max | converges below a threshold γ (we use 0.5% in our experiment). We

also stop the process if cyclic swapping.

Fast Neighbor Tracking Algorithm. Finding every partition’s out-of-partition neighbors

Vremote
i can be time-consuming (line 4–5) because the search of all nodes in Vi takes O(|V|)

time. We present an algorithm that enables incremental updates to track each node’s out-

of-partition neighbors. The algorithm reduces the time complexity to O(dv), where v is

the node moving in or out.

Making incremental updates in Vremote
i is not straightforward. This is because mov-

ing a node out of Vi does not necessarily remove all its remote neighbors from Vremote
i , as

those neighbors could be remote neighbors to other nodes in Vi. To solve this problem,

we maintain the in-partition degrees din
v for every node v ∈ Vremote

i . For example, when a

node v moves out from Vi, the in-partition degrees of v’s remote neighbors, vremote, will be

decreased by 1, and the node will be removed from Vremote
i if its din

v reaches 0. The tech-

nique is used when implementing node swapping (line 12–13) between the two affected

node sets, rather than triggering a global recount. Moreover, as the search procedures

(line 4–5 and line 10–11) are independent without dependencies, they are parallelized on

multiple CPU cores with shared memory.

4.4 Multi-level Pipeline Scheduling

In GNN Hybrid parallelism, workers share intermediate results to meet computation

dependencies. To achieve efficient cross-worker pipelines to overlap computation and

communication, the computation sequence is crucial as it impacts worker waiting time.

G3 proposes a multi-level pipeline scheduling algorithm that exploits opportunities for

host-GPU communication, GPU computation, and network communication via inter- and

intra-layer pipelines.
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4.4.1 Bin Packing Mechanism

The multi-level pipeline scheduling algorithm utilizes a bin packing mechanism: In each

layer, nodes are divided into smaller groups called bins and processed one at a time by a

worker. Once a bin’s computation is finished in one layer, the worker can send its output

to other workers and start processing the next layer.
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Figure 4.5: An example of the intra-layer pipeline and inter-layer pipeline with two bins
originated from worker #0.

The lifespan of a bin has 5 stages in the forward pass, as shown in Figure 4.5. First,

the scheduling algorithm decides on the allocation of nodes and generates a subgraph

containing these nodes and their neighboring nodes (even if initially they are not in the

bin). Next, the subgraph and its node embeddings will be transferred from host memory

to GPU memory and used for GNN computation. Finally, the output will be transferred

out from GPU and shared with remote workers when required.

The backward pass is similar to the forward pass, except that the inputs are gradients

instead of node embeddings. We reuse the bin packing decision in the forward pass as

the backward pass of a bin is performed in exactly the reverse direction of the forward.

The scheduling decision made in the forward is a good indication of how the backward

should be scheduled.

Analysis and Comparison. Utilizing the bin packing mechanism in GNN training allows

for fine-grained division of the training process at the per-node level, providing oppor-

tunities for overlapping computation and communication. Furthermore, it helps avoid

loading the entire graph onto the GPU, which can prevent GPU memory issues when the

input graph is large (§4.6.2), as seen in other GNN systems [151, 159].

We note that HGL [64] and JasmineGraph [87] also utilize bin packing, but they pack

bins at the subgraph level and process them in a FIFO order without any priority set-
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ting. In contrast, G3 packs bins at the node level and adapts to GPU memory capacity

to improve utilization while avoiding running out of GPU memory. G3 also proactively

schedules inter- and intra-layer pipelines based on computation priority (§4.4.2).

4.4.2 Pipeline Strategies

In GNN Hybrid parallelism, cross-partition dependencies are handled by sharing inter-

mediate results via peer-to-peer communication. Specifically, a node’s embedding is sent

to the workers where its remote neighbors are located. To optimize efficiency, the commu-

nication of a bin is overlapped with the computation in the next layer, either within the

same worker (intra-layer pipeline) or on a remote worker (inter-layer pipeline), as shown

in Figure 4.5.

(1) Inter-Layer Pipeline

We propose two designs that maximize overlapping opportunities in inter-layer pipelines.

Node Computation Priority. Since the total communication cost for a layer is fixed and

distributed evenly among workers with our partitioning algorithm (in §4.3), we aim to be-

gin data transmission as early as possible. Therefore, our scheduling algorithm (described

in §4.4.3) prioritizes computation for nodes that have more remote neighbors outside of

their partition, as these nodes generate more communication workload.

Eager Computation. From the perspective of the receiving worker, as soon as the worker

completes computation for the current layer, it can begin GNN computation on nodes

that are ready for the next layer. A node is considered ready when its remote neighbors’

embeddings have all been received from other workers.

When the memory footprint of ready nodes exceeds a threshold, eager computation

packs them together and begins processing. The threshold is set to half the size of the

GPU memory. This threshold is consistent with the bin size in the intra-layer pipeline

(§4.4.2) to create smooth pipelines.

The above optimization opportunity exists because our node priority setting ensures

that other workers will begin transmitting output embeddings as soon as possible. This

way, the receiving worker can begin processing some of the nodes in the next layer using
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the partial results received from other workers.

(2) Intra-layer Pipeline

Computing with GPUs requires loading data into GPU memory. Because GPU mem-

ory is relatively small compared to host memory, even when the input graph is parti-

tioned across multiple workers, individual graph partitions may still be larger than the

GPU memory of a worker. Therefore, as described in the bin packing mechanism, a layer’s

computation might be split into multiple bins and processed in the GPU sequentially (Fig-

ure 4.5).

In order to construct an effective pipeline that overlaps GPU computation and host-

GPU communication, we utilize at most half the size of GPU memory for each bin so that

one bin can be processed while another is loading in or out of the GPU. Additionally, the

algorithm adapts bin sizes based on the memory requirements of each model layer to op-

timize efficiency. Since different models have different memory footprints, our algorithm

adaptively adjusts bin sizes based on the model structure.

4.4.3 Scheduling Algorithm

We now introduce the multi-level pipeline scheduling algorithm that realizes the bin pack-

ing mechanism and pipeline strategies outlined above.

Step 1. Sorting Nodes. The worker uses BFS to traverse its assigned graph partition from

any node in every connected component, sorting the nodes in the order of their visit. Then,

the worker separates the nodes with remote neighbors from the rest and prioritizes them

by placing them at the front of the list, creating the priority list L. This step corresponds

to the node computation priority setting in inter-layer pipelines.

Step 2. Calculating Bin Size Limit. We estimate the GPU memory required for one node

in a GNN layer by using the layer’s input and output embedding size. The bin size limit

is then adaptively calculated for each layer by dividing half of the GPU memory size by

the per-node memory usage. This ensures that each bin can be processed while another

is loading in or out of the GPU without exceeding the GPU’s memory limit. This step

decides the bin size limit for intra-layer pipelines.

54



Step 3. Index-based Bin Packing. We iterate through the priority list L sequentially

(index-based), adding ready nodes and their neighbors into a bin. Once a bin reaches its

limit, we move on to a new bin and continue adding until all nodes in L are processed.

This step schedules bins for intra-layer pipelines on each worker and realizes eager com-

putation.

Index-based partitioning preserves locality when adjacent nodes are stored close to

each other as [78, 198] shows, and our BFS-based sorting in the first step creates such

locality, which increases the chance of packing nodes and their neighbors into the same

bin and helps accelerate neighborhood aggregation in GNN training.

Analysis. The scheduling algorithm’s time complexity is primarily determined by the

BFS used for the computation priority of nodes, which takes O(|E| + |V|), the same as

initializing the graph data. In practice, GNN training begins on the GPU after the first bin

is generated on the CPU. While the remaining bins are generated on the CPU, their costs

do not affect overall performance as they are hidden under the GPU computation.

Proving the correctness of the algorithm is straightforward, as it only alters the compu-

tation order for the nodes without affecting the computation itself in GNN training. Our

experiments on time-to-accuracy (§4.6.3) also confirm the correctness of the algorithm and

our implementation.

4.5 Implementation

In this section, we give an architecture overview of G3 (§4.5.1), and present the implemen-

tation details of the G3 prototype (§4.5.2).

4.5.1 Overview

The workflow of G3 is shown in Figure 4.6. G3 takes a large graph as input and goes

through two stages (i.e., locality-aware iterative graph partitioning and multi-level pipeline

scheduling). In particular, the first stage partitions the input graph iteratively in order to

balance the workload according to the cost model. Then, the second stage trains the GNN
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Figure 4.6: Overview of G3 System

using inter- and intra-layer pipeline scheduling to overlap communication with compu-

tation.

The graph partitioning stage is processed offline in the scheduler. For the online

scheduling stage, the architecture of G3 takes advantage of the scheduler (i.e., global and

local task scheduler) to synchronize the training process. Specifically, each worker in the

scheduling stage runs a local task scheduler to schedule its local task and an executor

process for training tasks, while the worker with rank 0 runs a global scheduler that coor-

dinates the model synchronizations across the cluster.

4.5.2 System Implementation

We implement G3 purely in Python. The functionalities in G3 include graph partition, task

execution, and communication handlers between nodes in the graph. We build G3 on top

of DGL for GNN operations and PyTorch for parameter synchronization, respectively.

Scheduler. The scheduler process takes charge of graph partitioning and online model

coordination. Before training, the scheduler generates each partition’s nodeID lists as de-

scribed in Algorithm 2. The lists are then passed to DGL partition APIs to partition the

graph into corresponding subgraphs, which contain all nodes listed and the edges des-

tined for them. As described in §4.3.2, to accelerate the partition process, G3 parallelizes

it through multiple CPU cores. During training, the global scheduler runs a coordination

thread for layer-wise parameter synchronization. Note that G3 wraps and synchronizes
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each layer’s parameters separately. Therefore, the coordination thread is responsible for

monitoring the layer-wise BP programs in all workers, and notifying all workers to simul-

taneously update the corresponding layer parameters once all workers have finished the

computation.

Workers. The worker process takes charge of P2P data sharing, online data-loading, and

task execution. The worker first analyzes its subgraph and sets up send&recv hash ta-

bles for P2P data sharing. The hash tables contain dst/src workers with respect to their

nodeIDs, which indicate the P2P inter-layer transmission paths. As each worker processes

upon its dedicated partition throughout training, such tables remain unchanged and re-

side permanently in host memory for fast lookup. For the data-loading part, the worker

achieves fast online bin packing by leveraging unused CPU resources (the same way as

partition does) to judge ready nodes, and spawns data-loading threads for each bin to

wrap the bin’s nodes and their incident edges into DGLBlock format and then pushed

into TaskQ for computation. The main process consumes tasks sequentially, and then

splits the output result into pieces and spawns threads to send them out, referring to the

generated P2P hash tables.

4.6 Evaluation

In this section, we evaluate G3 with comprehensive testbed experiments. We first show

the scalability of G3 by comparing it with mini-batch systems (§4.6.1), and its through-

put performance compared to other full-graph systems (§4.6.2). Then we show G3’s fast

convergence speed and better accuracy compared to all baselines (§4.6.3). We also report

the GPU utilization of each system (§4.6.4). Furthermore, we show the potential of G3 by

exploring more complex GNN models and graphs in terms of layers and features (§4.6.5–

§4.6.6). Finally, we demonstrate the effectiveness of G3’s designs by comparing them with

the state-of-the-art strategies (§4.6.7).

In summary, our key results reveal that:

• G3 achieves higher throughput than all baselines by up to 2.24× in a 16-node cluster,

and as much as 5.5× better GPU utilization.
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• G3 achieves up to 2.3× faster convergence speed and better final accuracy (∼6% higher)

compared to baselines.

• G3 is able to explore more complex GNN models and graph datasets. It achieves as

much as 25.9× speedup with a 4-layer GNN model, and 1.94× speedup when training

over graphs with 256-dimensional features compared to DGL.

• The microbenchmarks reveal that balanced partition and multi-level pipeline improve

the training performance by up to 11.66×, and the benefits increase when scaling.

Experiment setup. We evaluate G3 using 8 physical servers (each with 2 RTX 3090 GPUs,

80 CPU cores (2.1GHz Intel Xeon Gold 5218R), 256GB RAM, and 2 Mellanox ConnectX5

NICs), and 4 Mellanox SN2100 switches. We divide one physical server into two docker

containers, each with a 3090 GPU, 40 CPU cores, 128GB RAM, and a 10Gbps virtual Eth-

ernet interface1 to get a 16-node testbed. All nodes run 64-bit Ubuntu 18.04 with CUDA

v11.1, DGL v0.6.1, and PyTorch v1.10.1.

Ogbn- Amazon Ogbn- Twitter-
products papers 2010

Nodes 2.45M 1.60M 111.1M 41.65M
Edges 61.86M 132.2M 1.616B 2.405B

Features 100 200 128 128
Classes 47 107 172 100

Avg. Deg 50.5 82.7 29.1 57.7

Table 4.2: Graph datasets used in our evaluation.

Datasets. Table 4.2 lists four graph datasets that we used in our evaluation, including

three popular GNN datasets: Ogbn-products [71], Amazon [185], and Ogbn-papers [71],

and one graph dataset Twitter-2010 [36,37]. We generate random features for Twitter-2010

ensuring that the ratio of labeled nodes remains consistent with what we observed in the

OGB datasets, and only use the throughput results when training over it.

GNN models & Metrics. We use three representative GNN models, GraphSAGE [66],

GCN [91], and GAT [149] for evaluation. By default, we adopt standard 2-layer GNNs

1We use SR-IOV to separate the resource of physical NIC. [54] shows that it achieves nearly the same
performance as the non-virtualized environments.
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with a hidden dimension of 16 in all experiments. For GAT, we use 8 attention heads. We

test the performance of G3 on node classification tasks (e.g., predicting the category of a

product in the Ogbn-products dataset). We use throughput as our evaluation metric, which

is the sum of all workers’ average throughput.

Baseline. We compare G3 with two kinds of GNN training systems, i.e., mini-batch

system and full-graph system, for different evaluation purposes.

For mini-batch systems, we compare G3 with DGL [158, 196], a representative deep

learning library for graphs, in terms of scalability and accuracy. We use DGL with PyTorch

backend and conduct distributed training experiments. We use METIS, the default parti-

tion algorithm of DGL, in all DGL evaluations. We also compare with ClusterGCN [45],

a method that does not synchronize features among workers during training, in terms of

time-to-accuracy. Note that we do not compare with it upon throughput, as it has no fea-

ture communication throughout training and hence always achieves linear scalability, but

at the cost of significant accuracy loss (see §4.6.3).

For full-graph systems, we compare G3 with BNS-GCN [151] and NeutronStar [159] in

terms of throughput, accuracy, and GPU utilization. For system configurations, we main-

tain the default partition strategies for each system, i.e., using METIS for BNS-GCN and

a chunk-based approach for NeutronStar. We set the sampling ratio to 1 to ensure full-

graph training in BNS-GCN. We implement GraphSAGE aggregators based on the exist-

ing GCN implementation in NeutronStar. We excluded these systems from our scalability

experiments as they are not specifically designed for scalability. As previously reported in

their original papers (Figure 5 in[151], Figure 12 in [159]), these systems show diminish-

ing returns when increasing the number of workers. This is primarily due to large system

overhead from cross-partition replication, as well as unbalanced workloads and underuti-

lized overlapping opportunities, as discussed in §4.1.3. Additionally, these systems load

the entire graph directly onto the GPU for parallel processing, making it infeasible to train

GNNs on billion-edge graphs due to GPU memory constraints (Figure 4.11), especially

when the cluster size is small.

Training pattern. In our experiments, G3, BNS-GCN, and NeutronStar perform full-

graph training, while DGL performs sampling-based mini-batch training. For mini-batch
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training, we set the batch size of DGL to 1000 in all experiments. For a fair comparison

upon throughput, we set our initial bin size (§4.4.2) equal to the batch size when compar-

ing G3 with DGL. For neighborhood sampling in DGL, we adopt the sampling strategy

(25, 10) [66] in all experiments. For full-graph training, we set G3’s initial bin size to dif-

ferent values according to the input graph. For small graphs including Ogbn-products

and Amazon, the initial bin size is set to 5000 to achieve high initial throughput like other

full-graph systems, as they parallelize training by directly loading the whole graph into

GPUs. When training over large graphs including Ogbn-papers and Twitter, we set G3’s

initial bin size to 1000 to avoid GPU memory explosion.

4.6.1 Scalability

We demonstrate G3’s scalability by comparing with DGL over four datasets in a cluster

whose size ranges from 2 to 16. We train three models on each system to obtain the global

throughput. The results are shown in Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10.

DGL
G3

x10,000

Th
ro

ug
hp

ut
 (n

od
es

/s
)

0

20

40

# of workers
2 4 8 16

(a) GraphSAGE

DGL
G3

x10,000

Th
ro

ug
hp

ut
 (n

od
es

/s
)

0

20

40

# of workers
2 4 8 16

(b) GCN

DGL
G3

x10,000
Th

ou
gh

pu
t (

no
de

s/
s)

0

10

20

30

# of workers
2 4 8 16

(c) GAT

Figure 4.7: Training 3 GNN models over Ogbn-products. G3 is able to gain up to 3.66×
higher throughput over DGL.
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Figure 4.8: Training 3 GNN models over Amazon. G3 is able to gain up to 2.48× higher
throughput over DGL.
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Figure 4.9: Training 3 GNN models over Ogbn-papers. G3 is able to gain up to 1.47×
higher throughput over DGL.
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Figure 4.10: Training 3 GNN models over Twitter-2010. G3 is able to gain up to 1.91×
higher throughput over DGL.

Different Systems. DGL shows poor throughput performance in all models with increas-

ing cluster size. For example, when training over Ogbn-papers with the cluster size from

8 to 16, we only observe as much as 1.32× speed up compared to the double cluster size.

This corresponds with the discussion in §4.1 that even with sampling strategies, the data

parallelism scheme adopted by DGL suffers from duplicate computation and communi-

cation among workers. Compared to DGL, G3 achieves better scalability improvement

almost in all cases. For example, G3 speeds up training by 1.64× and 1.74× on average

over Ogbn-papers and Twitter-2010 when the cluster scales from 8 to 16, which is higher

than those of DGL, i.e., 1.32× and 1.44×. We remind the readers that training in large

graphs is more challenging as their dependencies are more complex and would exagger-

ate the scalability issue. Therefore the results above indicate better scalability of G3 than

DGL. Overall, G3 outperforms DGL by 2.04×, 1.51×, 1.32×, and 1.13× in a 16-node clus-

ter when training over four datasets, respectively.

Different GNN models. The training performance varies significantly across different

GNN models. In a 16-node cluster, while G3 achieves higher performance improvement

(1.24–2.45× speedup) with GraphSAGE and GCN models, it only speeds up GAT train-
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ing process by 1.25–1.46×. In specific, G3 and DGL achieves almost the same through-

put when the cluster size is small (from 2 to 8). This is because: 1) GAT model is more

computation-intensive; 2) the improvement of communication is marginal when in small

clusters. Hence, there is little room for G3 to optimize training. Moreover, GAT train-

ing involves extra intermediate attention tensors generation during forward propagation.

The extra generated tensors increase the data volume transmitted between CPU and GPU,

which therefore slows down the training process.

4.6.2 Comparison with Other Full-graph Systems

We compare with other full-graph systems, i.e., BNS-GCN and NeutronStar, in terms of

training throughput over four datasets in a 16-node cluster. We train GraphSAGE and

GAT models in each system and obtain the global throughput.

NeutronStar BNS-GCN G3

x10,000

O
O
M

O
O
M

O
O
M

Th
ro

ug
hp

ut
 (n

od
es

/s
)

0

20

40

Ogbn-products Amazon Ogbn-papers Twitter

(a) GraphSAGE

NeutronStar BNS-GCN G3

x10,000

O
O
M

O
O
M

O
O
M

Th
ro

ug
hp

ut
 (n

od
es

/s
)

0

10

20

Ogbn-products Amazon Ogbn-papers Twitter

(b) GAT

Figure 4.11: Full-graph training over 4 datasets. G3 is able to gain 1.08-2.24× higher
throughput over baselines.

The results are shown in Figure 4.11. G3 achieves 1.08-2.24× speedups over two base-

lines in all settings. NeutronStar performs worst in all settings because it adopts the

chunk-based partition strategy that requires a significant communication workload. BNS-

GCN performs better because METIS partition minimizes global edge-cut and thus incurs

a low global communication workload. However, such strategy cannot balance commu-

nication for each partition, as described in §4.3.1, and hence may have straggler issues.

Besides, both systems require loading every subgraph in each assigned worker for full-

graph training. Such manner has two issues: 1) It fails to exploit the overlapping oppor-

tunities between computation and communication; 2) It results in an out-of-memory error

when training over large graphs, as the size of the whole subgraph can easily exhaust the

GPU memory in each worker. For G3, the balanced partition strategy it adopts achieves
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both low global communication and balanced communication for each partition, result-

ing in a balanced subgraph distribution for training. Moreover, the multi-level pipelining

achieves: 1) fine-grained bin-level overlapping of communication with computation; 2)

training over large graphs without out-of-memory error as it supports swapping bins be-

tween CPU and GPU to relieve resource constraints. Though such memory swapping

comes with a throughput slowdown, we believe it is necessary for the tradeoff between

memory constraint and training efficiency. Overall, G3 outperforms all baselines, and

the mean speedups over BNS-GCN and NeutronStar are 1.38×/1.20× and 1.84×/1.89×
for GraphSAGE/GAT training, respectively. G3 speeds up less with GAT because of the

higher computation workload in GAT and extra memory swapping overhead, as illus-

trated in §4.6.1.

4.6.3 Time-to-Accuracy

In these experiments, we compare G3 with baselines in terms of time-to-accuracy. We con-

duct experiments using G3, BNS-GCN, and NeutronStar over Ogbn-products and Ama-

zon, and using G3, DGL, and ClusterGCN over Ogbn-papers. We train GraphSAGE in all

experiments in a 16-node cluster, and record the test accuracy during training.
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Figure 4.12: Time-to-accuracy results over three datasets. G3 achieves 1.8-2.3× faster con-
vergence speed than full-graph baselines, and 6%-10.7% higher final accuracy than mini-
batch baselines.

The results are shown in Figure 4.12. The dashed lines are the approximate final ac-

curacies that G3 achieves in each dataset, i.e., 70.5% for Ogbn-products, 62% for Amazon,

and 40.5% for Ogbn-papers, respectively.
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As Figure 4.12a and Figure 4.12b for small graphs show, three full-graph training sys-

tems all converge to similar final accuracy. But G3 converges fastest among the three, i.e.,

1.8-2.3×, thanks to its higher training throughput, which can be attributed to the balanced

partition and multi-level pipelining.

As Figure 4.12c for the large graph shows, initially, ClusterGCN converges the fastest

among the three because it has no feature synchronization among workers, and hence

has the minimal epoch time (∼3.2 seconds). However, due to the lack of neighbor infor-

mation from remote hosts during training, ClusterGCN can only converge to as much as

29.8%. Afterward, we see no accuracy improvement with more training epochs. DGL con-

verges faster but can only converge to low final accuracy, i.e., ∼6% lower than the value

G3 achieves. The faster convergence speed that DGL achieves is due to the property of

mini-batch training. Such paradigm updates the model during every iteration, which is a

higher update frequency than that of full-graph training that G3 adopts (e.g., 75 vs. 1 in

Ogbn-papers). As a result, the frequent update manner converges faster, but at the cost of

significant final accuracy loss due to the sampling in training (§4.1.3). For G3, it initiates

the slowest among all due to the property of full-graph training. But then it converges

rapidly and finally achieves the best accuracy thanks to its high efficiency and full-graph

training. Overall, G3 achieves the best final accuracy than DGL and ClusterGCN. The

higher accuracy of G3 can be attributed to the full-graph training adopted by G3 than the

mini-batch training adopted by DGL [78].

4.6.4 GPU Utilization

We report the GPU utilization of G3 compared with baselines when training GraphSAGE

over Ogbn-products in a 16-node cluster. We measure the GPU utilization every 10 mil-

liseconds. We use different initial bin size settings for G3 when compared to mini-batch

and full-graph systems, as specified in §4.6.1 and §4.6.2. The results in a five-second win-

dow are shown in Figure 4.13.

As Figure 4.13a shows, we find that G3 achieves both higher peak GPU utilization

(49% vs. 15%) and higher average GPU utilization (11.2% vs. 2%). Note that the small

utilization value is due to the sparse computations in GNN models that fail to leverage

GPU efficiency [60]. DGL achieves lower GPU utilization because its sampling becomes
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(a) GPU utilization compared with
mini-batch systems. The peak/aver-
age GPU utilizations are 49%/11.2% and
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(b) GPU utilization compared with other full-
graph systems. The peak/average GPU utiliza-
tions are 19%/5.4%, 78%/4.8%, and 8%/1.1%
for G3, NeutronStar, and BNS-GCN, respec-
tively.

Figure 4.13: G3 achieves 5.5×/2.9× higher average GPU utilization than mini-batch/full-
graph baselines.

the bottleneck and limits the GPU utilization, as elaborated in §4.1.3. For G3, however,

it remains high GPU utilization thanks to the balanced workload across workers and the

multi-level pipelining to exploit overlap opportunities.

As seen in Figure 4.13b, NeutronStar has a higher peak GPU utilization compared to

G3 and BNS-GCN, but also experiences the most GPU idle time. This is because Neutron-

Star loads the entire graph to GPU memory before processing, which leads to high GPU

usage but more idle time (76.6% of the time) waiting for communication. Additionally,

NeutronStar uses libtorch instead of DGL to implement GNN operators, which may also

contribute to the difference in peak GPU utilization. BNS-GCN performs the worst peak

and average GPU utilization due to the extra sampling steps during training. Overall, G3

has the best average GPU utilization among all systems, with 2.9× higher utilization on

average than BNS-GCN and NeutronStar. As a result, G3 experiences almost no GPU idle

time during the time span. This is due to the balanced workload that eliminates straggler

issues and the multi-level pipelining that maximizes the overlap of communication and

computation.

We also observe that with a smaller initial bin size setting, G3 achieves better GPU uti-

lization. This is because, with a finer-grained bin packing, G3 can achieve better pipelin-

ing, but at the cost of more CPU-GPU memory swapping. We leave the optimal bin size

configuration that balances the tradeoff between the fine-grained pipelining and minimal

memory swapping between CPU and GPU as future work.
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4.6.5 Impact of Layers

In this experiment, we compare G3 with DGL when training GraphSAGE with different

numbers of layers over four datasets in a 16-node cluster. We create three variants for

each GNN model with 2, 3, and 4 layers. The sampling strategies for DGL are (25, 10),

(25, 15, 10), and (25, 20, 15, 10) for 2-, 3-, and 4-layer models, respectively. We report the

throughput speedup of G3 against DGL.
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Figure 4.14: The throughput advantage of G3 over DGL increases with more GNN layers.

Figure 4.14 shows the results. We observe that the advantage of G3 over DGL increases

drastically with the number of layers when training over all datasets. Specifically, G3

outperforms DGL by up to 25.9× in the 4-layer model. As elaborated in §4.1.3, DGL

replicates all out-of-partition nodes for each mini-batch, whose size grows exponentially

with the number of layers. Therefore, the efficiency of DGL degrades drastically with the

increasing number of layers. By comparison, G3 alleviates duplicate computation and

communication due to its Hybrid parallelism design and thus shows a greater advantage

over DGL with deeper GNNs. Specifically, G3 accelerates the training process over the

four datasets by 25.9×, 9.6×, 7.8×, and 22.0×, respectively. The significant improvement

of G3 than DGL demonstrates the potential of G3 to support exploration for deeper and

more complex GNN models.

4.6.6 Impact of Input Features

In this experiment, we compare G3 and DGL using Amazon dataset with varying input

feature dimensions in a 16-node cluster. We train GraphSAGE on Amazon and vary the
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input feature dimensions from 16 to 256.
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Figure 4.15: G3 achieves better throughput performance when the number of features
increases.

Figure 4.15 shows that G3 outperforms DGL in all dimensions and has a more graceful

decrease in throughput as the feature dimension increases. DGL’s heavy degradation in

performance with increased feature dimension (e.g., G3 outperforms DGL by 1.94× in a

256-dimensional graph) is due to the increased redundant communication, while G3 elim-

inates this redundant communication and uses multi-level pipeline scheduling to overlap

computation and communication. We observe a slight decrease in G3’s throughput when

the input feature dimension increases from 128 to 256, possibly due to the large com-

munication volume not being fully overlapped. Overall, the results demonstrate G3’s

versatility over a wider range of graph datasets.

4.6.7 Microbenchmarks

Balanced Work Partitioning. We evaluate the effectiveness of G3’s locality-aware itera-

tive partitioning by replacing it in G3 with the following partitioning methods.

• Random. Nodes are assigned to partitions at random.

• Chunk-based [198]. Nodes are split into contiguous chunks, with each chunk repre-

senting a partition.

• METIS [88]. A widely used graph partitioning library that generates partitions with

minimum edge-cuts.
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• G3 with locality-aware iterative graph partitioning.
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Figure 4.16: Effectiveness of balanced partitioning.

Figure 4.16 shows the training throughput using the above algorithms when the clus-

ter scales out. Algorithms such as random and chunk-based partitioning perform poorly

as they do not take into account all edges in the graphs. METIS and balanced partitioning,

which aim to minimize the number of edges across subgraphs, perform better. Balanced

partitioning, in particular, by balancing communication and computation workload, im-

proves the straggler issue and is important for multi-level pipeline scheduling (as dis-

cussed in §4.2.2). Overall, balanced partitioning leads to a maximum 4.3× improvement

in speed compared to other partition algorithms.

Multi-level Pipeline Scheduling. We evaluate the effectiveness of multi-level pipeline

scheduling by performing experiments on the following variants of G3.

• Sequential. G3 with no inter- or intra-layer pipeline mechanism. All workers process

computation and communication sequentially during training, which is the same man-

ner as [64, 87]’s bin-packing performs.

• Inter-layer. G3 that pipelines only across layers (§4.4.2). Each worker employs the

inter-layer pipeline but naively packs nodes with consecutive node IDs into bins.

• Intra-layer. G3 that pipelines only within the same layer (§4.4.2). Each worker waits

for all required intermediate results and employs the intra-layer pipeline with adaptive

bin packing.
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• G3 with the multi-level pipeline scheduling.
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Figure 4.17: Effectiveness of multi-level pipeline.

Figure 4.17 shows the training throughput of various G3 variants. The sequential

method has the lowest throughput. Intra-layer and inter-layer methods both improve

through partial pipelining, with the intra-layer performing better, but this advantage de-

creases as the cluster size increases. This is because (1) the initial bin size of 11 allows

for more opportunities for intra-layer pipelining, and (2) the inter-layer pipeline takes ad-

vantage of more network resources with a larger cluster size. The multi-level pipeline

scheduling in G3 provides the best scalability and can achieve a maximum 11.66× im-

provement in performance speed.

4.7 Related Work

GNN Frameworks. DGL [158, 196] supports distributed GNN training and is widely

used in both academia and industry. ROC [78] proposes online learning-based graph par-

titioning for a balanced workload and uses dynamic programming for efficient memory

management. NeuGraph [116] bridges graph processing with DNN and support efficient

multi-GPU training. However, these frameworks suffer from either layer-wise communi-

cation barriers or cross-partition neighbor replications, as elaborated in §4.1.3. PyG [58],

AliGraph [197], Euler [34], and AGL [186] adopts mini-batch training with sampling, re-

sulting in sub-optimal final accuracy [78].
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GNN Training Optimization. GNNAdvisor [164] presents optimizations such as work-

load management and GPU memory customizations. DGCL [40] proposes a communi-

cation planning algorithm to optimize communication during training. PaGraph [107]

proposes a caching policy that reduces data movement between CPU and GPU for the

frequently visited nodes. These works assume that graphs are stored in one machine.

BNS-GCN [151] advocates full-graph training and proposes a simple yet effective sam-

pling method to relieve the communication and memory overhead. PipeGCN [152] de-

fers the communication to the next iteration’s computation, which introduces staleness

and results in a lower theoretical convergence speed. Sancus [129] is also aware of em-

bedding staleness and uses historical embeddings with cache to avoid communications

adaptively. SALIENT [85] optimizes mini-batch training with a fast sampling approach,

shared-memory parallelization, and pipelining of batch transfer. Dorylus [146] adopts

pipeline parallelism [75, 124] to maximize the resource utilization in the serverless sce-

nario. The above works may still potentially compromise their final accuracies. SAR [122]

is a CPU-only GNN training system that proposes a distributed sequential rematerializa-

tion scheme for efficient memory usage. It does not support GPU training.

4.8 Conclusion

This paper tackles the scalability challenge in distributed GNN training. We propose GNN

Hybrid parallelism in G3 to scale out GNN training with carefully scheduled peer-to-peer

intermediate data sharing, enabling scalable GNN training on large graphs. G3 accelerates

the training process by balancing workload across workers with locality-aware iterative

partitioning, and overlaps communication with computation using a multi-level pipeline

scheduling algorithm. We evaluate G3 with extensive experiments on large graphs, and

the results demonstrate up to 2.24× improvement in training throughput and better final

accuracy compared to previous systems in a 16-node cluster.
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CHAPTER 5

HERMOD: A NEAR-OPTIMAL COFLOW
SCHEDULER FOR LLM TRAINING

Large language models (LLMs) have demonstrated exceptional performance in tasks such

as machine translation, code generation, and conversational agents [39, 55, 65, 126]. How-

ever, training LLMs is highly demanding due to their complex architectures and mas-

sive data requirements. To overcome the memory and computational limits of individual

accelerators, LLM training is distributed across tens of thousands of accelerators, utiliz-

ing parallelization strategies to enable efficient coordination and scaling across the clus-

ter [61, 81, 132].

Parallelism in LLM training involves diverse interleaved communication patterns: AllReduce,

ReduceScatter, and AllGather for data parallelism (DP) and tensor/sequence paral-

lelism (TP/SP) [80, 130, 136, 145]; AlltoAll for expert parallelism (EP) [100, 108]; and

send/recv for pipeline parallelism (PP) [75, 124]. From a network perspective, these

communication patterns can be represented as distinct coflows [41], which are managed

by optimized coflow schedulers.

Coflow schedulers optimize job completion time (JCT) by reordering communication

tasks to address data dependencies inherent in training, minimize computation block-

ages, and enhance the overlap between communication and computation. For instance,

ByteScheduler [130] improves DP efficiency by overlapping DP coflows across layers,

while Lina [100] lowers the cost of EP coflows by prioritizing them over DP coflows dur-

ing the backward pass. These tailored strategies for DP and EP have improved the overall

training performance efficiently.

Unfortunately, existing approaches [100, 130] suffer from several limitations that hin-

der optimal scheduling. First, these methods restrict their scheduling strategies to end-

hosts, neglecting the entire cluster, which leads to contention within the network core—an

issue worsened by the adoption of fine-grained load-balancing mechanisms [61, 81, 132].
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Additionally, they fail to account for PP coflows, which are prevalent in both dense and

sparse models and exhibit sequential dependencies, where each PP stage must await the

completion of the preceding coflow. Preliminary simulations showcase that incorporat-

ing PP coflow scheduling could improve distributed LLM training performance by up

to 1.29× (§5.1.3). Lastly, these strategies fail to address flow contentions within coflows,

resulting in inefficient communication when the coflows are internally imbalanced.

Meanwhile, naively combining existing strategies poses significant challenges, partic-

ularly in the presence of widely adopted optimizations like ZeRO-2 and 1F1B [125, 136].

For example, integrating Lina and ByteScheduler can lead to the persistent deprioritiza-

tion of DP coflows throughout training. However, this approach can be suboptimal, as

DP coflows become critical during the forward pass of the next iteration, where they are

required to AllGather layer parameters [136]. Furthermore, pipeline schedules such

as 1F1B introduce an additional microbatch dimension, further complicating scheduling

decisions and necessitating a more holistic, cluster-wide scheduling approach.

This leads us to a central question: Can we design a coflow scheduler that optimally orches-

trates all types of coflows at cluster level throughout the LLM training process?

To address this question, we systematically analyze the LLM training DAG with coflows

(§5.2) and identify three cases where coflow overlaps occur. A key insight emerges from

this analysis: coflows can be uniquely characterized by three critical model factors—microbatch

ID, coflow type, and layer ID—which collectively determine their priorities for optimal

scheduling. These factors are application-specific and remain constant throughout train-

ing, making them easy to convey to the underlying transport layer and switches.

Guided by this insight, we propose Hermod, a near-optimal coflow scheduler that

schedules all types of coflows optimally at cluster level throughout the LLM training pro-

cess. Hermod consists of two key components: 1) a model factor-driven inter-coflow pri-

ority scheduling mechanism with strict prioritization, and 2) an optimal matching-based

intra-coflow scheduling strategy tailored to each coflow type. The prioritization is deter-

mined by strictly adhering to the LLM training DAG and quantized according to the above

three model factors. We rigorously analyze the potential conflicts among these factors and

resolve them to develop a holistic priority strategy for coflows throughout training. For

intra-coflow scheduling, the goal is to minimize coflow completion time (CCT) without
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degrading overall JCT. We propose strategies for each coflow type, ensuring that flows

in the highest-priority coflow are transmitted at maximum rates. While this approach

is straightforward for balanced DP and PP coflows, managing imbalanced EP coflows is

more challenging due to varying flow sizes. We leverage framework-level metadata [145]

with precise flow size information within EP coflows, and design a matching-based strat-

egy for EP coflows, leading to optimal performance in LLM training [33, 35].

We have implemented a fully functional prototype of Hermod and evaluated it using

both dense and sparse LLM models through small-scale testbed experiments and large-

scale simulations. The results demonstrate that Hermod significantly improves JCT over

existing schedulers for all LLM models. Specifically, in the testbed experiments, Hermod

improves end-to-end training speed by up to 1.44× in a 32-GPU cluster and 1.38× with

100Gbps network bandwidth, respectively. At larger cluster scales, the benefits of Hermod

are further amplified, yielding speedups of up to 1.50× in a 8192-GPU cluster and 2.07×
with a 400Gbps network.

In summary, this paper makes the following contributions:

• We conduct a systematic analysis of the LLM training DAG with coflows, identify-

ing three cases of coflow overlaps and three model factors that collectively determine

coflow priority (§5.2).

• We propose a model factor-driven inter-coflow scheduling mechanism with strict pri-

oritization, along with an optimal matching-based intra-coflow scheduling strategy tai-

lored to each coflow type to enhance global communication performance (§5.3).

• We evaluate Hermod on both dense and sparse LLM models, demonstrating that Her-

mod significantly improves JCT compared to existing schedulers in both testbed and

simulation experiments (§5.5).

5.1 Background: LLM Parallelism and Coflow Scheduling

Large-scale architectures and datasets in LLM training demand robust parallelisms and ef-

ficient communication mechanisms to maximize efficiency. We review these parallelisms
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and examine existing communication scheduling methods, while presenting our motiva-

tion.
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Figure 5.1: Different parallelisms and their major communication patterns in LLM train-
ing.

5.1.1 LLM Parallelism

Data parallelism (DP). DP distributes the dataset across devices, replicating both the

model and optimizer states, as illustrated in Figure 5.1(a). Devices independently com-

pute forward and backward passes, synchronizing via AllReduce operations [77, 130,

187]. ZeRO [136] improves memory efficiency by fine-grained sharding states and de-

composing AllReduce with ReduceScatter and AllGather. ZeRO-2 is commonly

adopted in LLM training for efficient memory management without introducing extra

communication overhead [81, 195]. Ring/Tree-AllReduce [18, 80, 141] and hierarchical

AllReduce [156] are widely adopted to optimize the synchronization process.

Pipeline parallelism (PP). As Figure 5.1(b) shows, PP splits the model into stages, reduc-

ing memory by storing only portions of the model per device [75,124,125]. Micro-batches

are processed sequentially across stages, with intermediate activations exchanged via P2P
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communication. Scheduling methods like 1F1B and interleaved 1F1B mitigate pipeline

bubbles [124, 125].

Tensor and sequence parallelism (TP & SP). TP divides layer operations among devices,

requiring AllReduce to aggregate results [145] (Figure 5.1(c)). SP extends TP by further

partitioning operators like LayerNorm and Dropout along the sequence dimension, re-

ducing memory overhead [92]. TP and SP together optimize communication by replacing

AllReduce with ReduceScatter and AllGather. In this paper, we use TP to refer to

both parallelisms.

Expert parallelism (EP). EP enables Mixture-of-Experts (MoE) by distributing expert

computations across devices [57,144]. As shown in Figure 5.1(d), expert layers use AllToAll

communication to dynamically route tokens to the appropriate experts, with flow sizes

determined by runtime token distribution [79, 100, 105, 108, 175].

Modern LLM training paradigms hybridly employ various parallelisms for efficient

training [108, 125]. For example, PTD-P [125] is widely adopted to balance computation

across GPUs while minimizing pipeline and communication overhead. While TP is often

limited to a single node due to its high communication cost, DP, PP, and EP are typically

deployed across multiple nodes [161, 175].

5.1.2 Coflows in Paralleled LLM Training

Coflow is a classical network abstraction that represents a group of flows sharing a com-

mon completion goal [46]. It provides an application-level, holistic view of communica-

tion to help avoid stragglers and gain benefits through strategic scheduling and place-

ment [188]. This abstraction has been proven expressive in multiple communication pat-

terns between successive computation stages of data-parallel applications, e.g., MapRe-

duce [51], and Spark [183], etc.

Coflows in LLM training. As LLM training is typically represented as a kind of data-

parallel application [125,130], we summarize the key characteristics of its communication

through the coflow perspective in Table 5.1:

• DP and TP/SP coflows use ring- or tree-AllReduce, where flow information—including
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Coflow Characteristics DP PP TP & SP EP

Coflow Type Ring-based, Tree-based Point-to-Point Ring-based, Tree-based All-to-All

On-Arrival Knowledge

Flow Number Ndp 1 Ntp Nep(Nep − 1)
Flow Endpoints Known Known Known Known
Flow Size Deterministic Deterministic Deterministic On-demand
Flow Distribution Balanced Balanced Balanced Imbalanced

Coflow Scope Inter-rack Inter-rack Intra-node Intra-rack

Table 5.1: Coflows in different parallelisms.

number, endpoints, size, and distribution—is pre-determined during compilation [31],

enabling proactive scheduling and resource allocation.

• PP coflows involve sequential P2P flows between pairs of pipeline stages. Although

containing only one flow per endpoint pair, these communications are still treated as

coflows [46]. Flow information is known ahead of time, during compilation [31].

• EP coflows use AllToAll operators with predetermined flow numbers and endpoints,

while flow sizes are dynamically calculated by the gate network based on token routing

(§5.1.1). Token distribution across experts causes imbalanced flow distribution, requir-

ing runtime scheduling adjustments for efficiency [100, 108].

The coflow scope aligns with hardware topology, varying in network bandwidth to

match the communication volume of each parallelism. DP and PP coflows span racks,

TP/SP are intra-node, and EP occur within a single rack [108, 175].

Prevalence of cluster-wide coflow overlap. Based on the above coflow characteristics,

we next examine the prevalence of cluster-wide coflow overlap in LLM training to high-

light the necessity for optimized coflow scheduling strategies. We conduct a measure-

ment study on a production-level NVIDIA DGX SuperPOD platform [20], equipped with

128 H-series GPUs (Hopper architecture) connected via 128 400Gbps ConnectX-7 NICs

in a rail-optimized topology. All servers are synchronized using Precision-Time Protocol

(PTP) [143] for accurate timestamp recording, and the overlap-grad-reduce training

parameter is enabled for faster training [22]. By measuring the start and end times of each

communication operator, we calculate the overlap duration among them.

Our analysis focuses on inter-node coflows, the primary bottleneck due to the lim-

ited 100Gbps RDMA bandwidth compared to the 400GBps NVLink bandwidth within
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Figure 5.2: [Production measurement] Cluster-wide coflow measurement using Mistral-
8×7B reveals significant overlap between coflows.

nodes [161]. We measure overlap for DP, PP, and EP coflows. The results, shown in Fig-

ure 5.2, reveal significant cluster-level coflow overlap1. Specifically, EP and DP coflows

overlap for 44.8% of the iteration time, DP coflows across different layers for 48.9%, and

PP coflows across different stages for 15.7%. These frequent overlaps lead to contention

and degraded communication performance.

5.1.3 Existing Works on Coflow Scheduling

Several works have been proposed to manage coflow overlaps [67,77,100,130,187]. Some

methods [67,77,130,187] optimize DP by reordering DNN layer transmissions to enhance

communication-computation overlap. For example, ByteScheduler [130] prioritizes DP

coflows from front layers and uses tensor partitioning to improve overlap. Other ap-

proaches [100] focus on EP, prioritizing communication in expert layers during backward

propagation to minimize AlltoAll time costs.

Despite their effectiveness, these approaches have several limitations in handling coflow

scheduling and addressing contentions across and within coflows:

Limitation #1: Lack of cluster-wide scheduling. Existing approaches [77, 100, 130] pri-

marily focus on scheduling at the endhosts, rather than managing training traffic across

the entire cluster. These methods enable coflow preemption only at the point of submis-

1Two coflows are considered overlapped when their flows occur concurrently at the same endpoints.
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sion to the communication library (e.g., NCCL [7]), while the underlying transport layer

remains unaware of these decisions. As a result, the lack of coordination between the in-

termediate scheduler and the transport layer can lead to suboptimal performance due to

contention at core network components, such as aggregate and core switches.
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Figure 5.3: [Simulation] Number of concurrent coflows at a core switch with different load
balancing mechanisms.

This contention is further intensified in state-of-the-art LLM training clusters, where

fine-grained load balancing mechanisms [38, 61, 81, 132] increase the probability of flow

intersections at switches. Although we lack permission to capture logs from production

switches, we simulate this scenario using the simulator from [162]. We train Mixtral-

8×7B [79] in a 1024-GPU cluster using two load balancing mechanisms commonly adopted

in recent AI clusters: ECMP [61, 81] and packet spray [38]. By measuring coflow numbers

in switch queues every 10µs, we observe that fine-grained packet spray increases concur-

rent coflows by an average factor of 7.4, as shown in Figure 5.3. The transport layer’s

lack of awareness prevents it from prioritizing high-priority coflows at switches, leading

to suboptimal performance in LLM training.

Limitation #2: Incomplete consideration of all coflow types. Existing approaches [77,

100, 130] overlook certain coflow types, particularly PP coflows, which are crucial as they

typically sit on the critical path of training and can block subsequent stages [75, 124].

We reuse the previous simulation configuration and assess the impact of different par-

allelism strategies with naive scheduling at the cluster level. The results in Table 5.2 in-

dicate that prioritizing DP coflows degrades training performance, whereas naive pri-

oritization of PP and EP coflows improves iteration times by 1.29× and 1.51×, respec-
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Configuration Baseline DP-first PP-first EP-first

Training Speedup - 0.81× 1.29× 1.51×

Table 5.2: [Simulation] The potential benefits of scheduling with different prioritization
strategies. DP-, PP-, and EP-first are heuristic-based approaches that prioritize DP, PP,
and EP traffic, respectively.

tively. Notably, EP coflows are specific to sparse MoE models, while PP coflows occur in

both sparse and dense model training. These findings highlight the need for optimized

scheduling across all coflow types—EP, DP, and PP—at the cluster-wide level to improve

LLM training efficiency.

As LLM models scale, PP becomes increasingly vital due to its lower communication

costs compared to TP. Experiments in [125] show that while TP degree caps at 8 due to

bandwidth limitations [161], PP degree scales with cluster size, leading to greater commu-

nication contention. Addressing these challenges is crucial to maintain training efficiency.

Limitation #3: Unaware of flow contentions within coflows. Existing approaches [77,

100, 130] focus solely on scheduling communication operators (i.e., coflows) without ac-

counting for flow contentions within each coflow. This limitation can lead to suboptimal

performance, as internal flow contentions can affect overall job completion time [33, 49].

In EP coflows, for example, imbalanced flow distribution among experts can exacerbate

contentions, leading to increased training completion times. We elaborate on these con-

tentions in §5.3.2. These approaches work primarily as intermediate schedulers, failing to

incorporate fine-grained, flow-level resource allocation strategies from traditional coflow

scheduling [33, 47, 49].

5.1.4 Motivation and Challenge

The above limitations motivate us of a coflow scheduler that can optimally, if possible,

consider all coflow types, and be implemented at the cluster-wide level. Specifically, the

coflow scheduler should be:

• Comprehensive: It should account for all coflow types, including DP, PP, and EP, to

optimize training performance across different parallelism strategies.
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• Fine-grained: It should address flow contentions within coflows and optimize flow-

level resource allocation to minimize JCT.

• Cluster-wise deployable: It should be aware of coflow overlap throughout training and

be deployable across the entire cluster, managing coflow scheduling at both endhosts

and network core components to reduce contention.

• Optimal: The scheduler should aim to optimally minimize the completion time of the

entire training.

Challenge: Non-trivial efforts in designing a comprehensive policy. To design a com-

prehensive coflow scheduler which optimally manages all coflow types, a naive approach

is to combine existing strategies for each coflow type for a comprehensive policy. Unfortu-

nately, this approach can lead to inefficiencies, especially with the prevalent optimizations

such ZeRO-2 and 1F1B [81, 125]. For instance, combining ByteScheduler and Lina results

in EP coflows always prioritize over DP coflows, while DP coflows are prioritized accord-

ing to their associated layers. This could lead to suboptimal performance. When crossing

iterations, DP coflows are on the critical path and be needed for AllGather operations to

gather layer parameters in ZeRO-2 [136]. This results in higher priority of DP coflows over

others. Besides, the significance between EP coflows of the front layers and DP coflows of

the latter layers is left uninvestigated. Furthermore, pipeline scheduling strategies such

as 1F1B introduce an additional microbatch dimension to cluster scheduling, further com-

plicating scheduling decisions—an aspect not yet addressed by existing schedulers.

In summary, existing approaches either require complex combinations to be adaptive

with prevalent optimizations or neglect some coflow types with potential performance

degradation. To address these challenges, a systematic analysis of coflow interactions

regarding the LLM training directed acyclic graph (DAG) is in its urgent need.

5.2 LLM Training DAG with Coflows

This section critically revisits the LLM training DAG with a focus on coflows, analyzing

the overlap among EP, PP, and DP coflows at different training phases. By identifying in-
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efficiencies and proposing a more efficient scheduling policy, we aim to enhance resource

utilization and improve overall training performance.

5.2.1 Problem Statement

We consider the common industry scenario where a dedicated cluster runs a single LLM

training job [81]. The network topology, worker placement, and parallelization strategy

are predefined before execution, resulting in a fixed LLM training DAG throughout train-

ing. This DAG determines coflow dependencies, encompassing all necessary data move-

ments. Formally, it translates into a dependency graph where each coflow represents a set

of flows with predefined characteristics, as detailed in Table 5.1.

The objective is to define a cluster-wide optimal scheduling policy that efficiently al-

locates network resources among coflows to minimize job completion time (JCT). Specifi-

cally, the policy should:

• Adhering to the LLM training DAG: It should strictly respect coflow dependencies as

determined by the DAG, incorporating conventional mechanisms like ZeRO-2 [136],

1F1B, and its variants [125].

• Minimize global JCT: The policy should minimize JCT of completing the entire coflows.

That says, it should avoid coflow overlaps as much as possible, while maximizing

communication-computation overlap.

• Cluster-wise deployable: It should be practically deployable across the entire cluster.

5.2.2 Systematic Analysis of LLM Training DAG

We depict a conventional LLM training DAG in Figure 5.4, which trains an MoE model

consisting of multiple MoE layers with ZeRO-2 and 1F1B optimizations. The training pro-

cess follows an iterative manner, with phases of forward propagation (FP) and backward

propagation (BP) in each iteration. Within each iteration, EP coflows occur twice per MoE

layer group for token dispatching and gathering. PP coflows then facilitate intermediate
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Figure 5.4: Computation and coflows in LLM training.

result transmission between layers2. These operations are repeated across layers and mi-

crobatches. During BP in the current iteration and FP in the next, DP coflows execute as

ReduceScatter and AllGather operations for gradient synchronization and parame-

ter updates3 [81, 130, 136, 187].

From the above DAG, we identify in total three cases where coflows may overlap, as

highlighted by the red rectangles in Figure 5.4:

• Case I: EP and PP coflows among different microbatches. After processing microbatch-1,

the worker invokes the asynchronous operator isend to transmit intermediate results

to the next PP stage, generating PP coflows. Simultaneously, it processes microbatch-

2, performing attention and gate computations before generating EP coflows for token

dispatching. Our profiling results in §5.1.2 show average attention and gate computa-

tion times of 2.4ms and 0.6ms, respectively. Given that PP coflows complete in∼4ms on

average, there is potential for PP-EP coflow overlap, even at the end host (as we have

identified in §5.1.2). This overlap becomes more likely at the cluster scale, where PP

coflows compete for bandwidth with other coflows, prolonging their completion while

attention and gate computation times remain constant.

• Case II: EP, PP, and DP coflows among different microbatches during backward propagation.

2For ease of presentation, we configure each layer to represent a pipeline stage, thus showing PP coflows
between layers. In practice, PP coflows occur between stages, which may span multiple layers, depending
on the PP degree.

3We use the same layer-wise description as in [130,187], whereas in PyTorch, DP coflows are grouped into
buckets spanning multiple layers while maintaining a sequential execution order [127].
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Building on Case I, DP coflows emerge during backward propagation, overlapping

with BP computation. In Megatron-LM, DP coflows are invoked only after the last

microbatch completes its gradient calculation for the layer and initiates gradient syn-

chronization. The concurrent nature of DP coflows with computation allows DP to be

transmitted simultaneously with other coflows [100].

• Case III: EP, PP, and DP coflows among different layers during cross-iteration phases. In this

case, DP coflows from latter layers may overlap with EP and PP coflows from front

layers during the next iteration’s forward propagation. This scenario becomes partic-

ularly common when enforcing priority scheduling with tensor partition4 [130], as the

figure depicted. Unlike Case II, DP coflows in this case are critical, as they gather the

parameters required to initiate forward propagation in the next iteration [136].

We make a key observation based on the identified cases: cluster-wide coflows through-

out training can be uniquely represented by three model factors: microbatch ID (MID),

coflow type (CType), and layer ID (LID). Specifically, MID and CType collectively identify

coflows in Case I and Case II, while CType and LID are for coflows in Case III.

Notably, these model factors showcase the following characteristics, making them

well-suited for optimal coflow scheduling:

• Pre-determined. The factors are pre-determined in applications and remain constant

throughout training.

• Simple. The factors are simple integers that can be easily transformed and transmitted

to transport and switches.

5.3 Hermod

In this section, we present the design of Hermod. We leverage the three model factors

and propose a near-optimal inter-coflow priority policy for scheduling all coflow types

4At the time of writing, Megatron-LM [145] does not yet support priority scheduling. We think this may be
partly due to the use of clip-by-norm [133] in LLM training, which can create barriers between iterations.
However, clip-by-value [133] could eliminate these barriers algorithmically.
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(§5.3.1). Building on this strict priority, we further introduce an optimal intra-coflow

scheduling policy to avoid fine-grained flow contentions (§5.3.2).

5.3.1 Model factor-driven Inter-Coflow Priority Scheduling

Our goal is to design an optimal inter-coflow scheduling policy to address the identified

three cases leveraging three model factors. The primary goal of the coflow scheduling

is to minimize the JCT of the training DAG in Figure 5.4, i.e., reducing the time spent

on the critical path (the longest path in DAG where computation/communication must

be executed) as much as possible and hiding the communication behind computation as

much as possible [67, 130].

Model factor-driven priority assignment. We make a key observation based on the

above goal: by considering how many on-critical-path computations can be blocked by the

coflows and when the transmitted data will be consumed, we can define a near-optimal priority

scheduling policy for all cases. Again, we use the example in Figure 5.4 for illustration.

• For Case I, we must address the contention between p f1,1 and e f1,2 coflows. We observe

that allocating more network resources to e f1,2 while delaying p f1,1 may accelerate the

progress of microbatch-2 in layer-1. However, this progress is stalled until microbatch-

1 completes in layer-2, which is delayed due to p f1,1 , ultimately increasing the overall

model processing time. The above phenomenon is due to the sequential nature of mi-

crobatch processing, where earlier microbatches block more computations on the criti-

cal path. Hence, it is essential to prioritize the coflows of earlier microbatches over the

latter ones. This prioritization can be generalized across all coflows within the same

iteration.

• For Case II, while the priority between EP and PP coflows is determined by the micro-

batch ID, their relationship with DP coflows must also be considered. Since EP and PP

coflows are consumed in the subsequent layer, whereas DP coflows are used in the next

iteration, EP and PP coflows should be prioritized over DP coflows. This minimizes

blocking time while maximizing the overlap of DP coflows with computation.

• For Case III, we analyze the priority between EP/PP coflows from the next iteration and
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DP coflows from the previous iteration. Given that data from former layers is consumed

sooner than that from latter layers, regardless of coflow type, coflows from earlier layers

should be prioritized.

Case I Case II Case III

Priority factor MicrobatchID Coflow type LayerID
(Lower is better) (EP & PP > DP) (Lower is better)

Table 5.3: Priority factors used to assign priority for three cases. The content in the paren-
theses indicates priority order.

Formally, the above priority decisions are quantified into three model factors, estab-

lishing a strict priority order among coflows, as listed in Table 5.3. Specifically, MID pri-

oritizes earlier microbatches to prevent critical path delays. CType assigns higher priority

to EP and PP coflows to maximize their overlap with DP coflows, with EP and PP coflows

further ordered by MID. LID prioritizes coflows from former layers to enhance overlap

opportunities for latter layers.

Conflicts MID+CType MID+LID CType+LID

Priority factor / MID∗ /

Table 5.4: Potential conflicts for different combinations of factors and the corresponding
priority factor. / indicates impossible scenario in training, and MID∗ means that MID is
prioritized mostly, unless in certain rare cases (e.g., DP coflows involve).

Handling factor conflicts. While comprehensive the above analysis is, an unresolved

question remains: how should coflow priorities be determined when the three model fac-

tors conflict? To address this, we rigorously examine all potential conflicts using domain

knowledge of LLM training and summarize the resolution in Table 5.4. Specifically,

• Conflict between MID and CType: A potential conflict, such as a DP coflow from an earlier

microbatch versus an EP coflow from a later microbatch, does not arise during training.

As stated in §5.2.2, DP coflows are invoked only after the last microbatch has completed

its computation. Consequently, DP coflows always carry the highest MID value, inher-

ently avoiding this conflict.
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• Conflict between MID and LID: A scenario such as a layer-2 coflow from microbatch-1

versus a layer-1 coflow from microbatch-2 can occur in two representative cases. The

first case involves EP and PP coflows with different MIDs and LIDs coexisting during

FP. Here, we prioritize MID over LID to minimize the on-critical-path computations’ block-

ages, ensuring that earlier microbatches are processed with minimal delays. The sec-

ond case arises during cross-iteration when a layer-1 EP/PP coflow from microbatch-2

overlaps with a layer-2 DP coflow. Since DP coflows always hold the highest MID (e.g.,

microbatch-4), prioritizing them prevents blocking microbatch-1 in the subsequent iter-

ation (as DP coflows correspond to "microbatch-1" in the next iteration [136]). However,

this scenario is exceedingly rare, as DP coflows typically complete before microbatch-2

begins processing in the next iteration (our measurements indicate that each stage per-

sists for approximately ∼100+ ms). Consequently, the general resolution for MID+LID

conflicts is: if DP coflows are present, LID takes precedence over MID; otherwise, MID

is prioritized. Given the rarity of DP-involved conflicts, the default prioritization strat-

egy remains MID over LID.

• Conflict between CType and LID: A case such as a PP coflow from layer-2 versus a DP

coflow from layer-1 is infeasible during training. During backward propagation, DP

coflow from layer-1 is never generated before PP coflow from layer-2, as DP coflows

are always the final coflows produced for a layer. During cross-iteration, the DP coflow

from layer-1 must be generated before the PP coflow from layer-2 due to dependencies

on the corresponding layer in the next iteration. Thus, this conflict does not occur.

• Conflict among all three factors: Such a scenario is impossible during training, as demon-

strated by the combined analyses above.

In summary, the priority assignment for the three factors follows the order of MID >

CType > LID. Notably, the above priority assignment with the three model factors ulti-

mately establishes a strict order among all coflows in the cluster throughout training.

Priority scheduling in interleaved 1F1B. While our prior analysis focuses on the con-

ventional DAG structure of LLM training with the widely adopted 1F1B pipeline sched-

ule [124, 125], our priority scheduling policy can be generalized to other DAG variants,

such as interleaved 1F1B [125]. In contrast to the conventional method, interleaved 1F1B
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distributes model layers across workers in an interleaved manner to minimize pipeline

stage bubble time, leading to interleaved transmissions of PP coflows. Our systematic

analysis indicates that under this scheduling variant, PP coflows are no longer on the

critical path and can be efficiently overlapped with computation, whereas the prioritiza-

tion properties of other coflows remain unchanged. Accordingly, only the priority order

in Case II in Table 5.3 requires adjustment: EP > PP > DP (where EP coflows remain on

the critical path, PP coflows are consumed within the same iteration, and DP coflows are

cross-iteration). All other priority assignments in Table 5.3 remain unchanged. Fortu-

nately, the order of the three factors remain unchanged, as the conflict cases are common.

Furthermore, the overall priority scheduling policy remains intact, as the nature of con-

flict cases is consistent across scheduling variants. We verify the efficiency of Hermod

with interleaved 1F1B in our evaluation (§5.5.2).

5.3.2 Matching-based Optimal Intra-Coflow Scheduling

Given the strict priority of coflows, the next step is to allocate network resources optimally

among flows within each coflow to eliminate contention and minimize coflow completion

time (CCT).

Line-rate Transmission is Desirable

Following previous coflow scheduling studies [33, 47, 49], the key to network resource al-

location within each coflow is designing optimal rate allocation strategy. In this work, we

systematically analyze the optimal rate allocation strategies tailored to different coflow

types. Specifically, we examine DP and PP coflows, which exhibit balanced flow distribu-

tions, and EP coflows, which are characterized by imbalanced distributions, as summa-

rized in Table 5.1.

Balanced coflows. As Figure 5.5 shows, balanced coflows exhibit fixed optimal rate

allocation strategies that minimize their CCTs, with each flow transmitting at line rate re-

gardless of the specific strategy employed. For example, in ring-based DP coflows, the

optimal strategy is to form a ring of flows, each transmitting at line-rate to achieve a

bandwidth-optimal solution [128]. Similarly, PP coflows benefit from line-rate transmis-
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Figure 5.5: Line-rate transmission is desirable for coflows with balanced flow sizes, e.g.,
DP & PP coflows.

sion, as each coflow consists of a single flow. Tree-based DP coflows differ slightly; since

they require two transmission trees, the available bandwidth is evenly divided, with each

tree allocated half of the line-rate bandwidth [18].

Imbalanced Coflows. For coflows with imbalanced flow sizes, i.e., EP coflows, the op-

timal solution to eliminate contentions among flows for minimal CCT is to ensure that

the largest flow always transmits at line-rate, as performed by previous works [33,47,49].

This can be achieved through two approaches: (i) the bandwidth-sharing strategy, which

allocates bandwidth in proportion to flow size [47, 49], and (ii) the line-rate transmission

strategy, which avoids explicit rate allocation and instead prioritizes completing all flows

as soon as possible while adhering to the coflow order [33].
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Figure 5.6: Line-rate transmission is desirable for coflows with imbalanced flow sizes to
avoid degrading the global JCT.

In the context of LLM training, we find the line-rate transmission strategy to be more

suitable. As shown in Figure 5.6, consider a scenario where EP (highest priority) and DP

(lowest priority) coflows start concurrently, and a PP coflow (second priority) begins at
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t = 2. This scenario is common during backward propagation when a worker starts EP

coflows alongside DP coflows, and its neighbor begins transmitting intermediate results

for the next microbatch. Under bandwidth sharing, all coflows complete at 13
3 , but the PP

coflow finishes later, potentially delaying the global JCT due to its placement on the critical

path and its higher priority over DP coflows. In contrast, with line-rate transmission,

the PP coflow finishes simultaneously with the EP coflow, with DP coflows transmitting

underneath, which prevents any delay in global JCT.

Theoretical support of line-rate transmission. Line-rate transmission is desirable over

bandwidth sharing in LLM training context because allocating bandwidth proportionally

does not improve the completion time of the highest-priority coflow [33] and can instead

negatively impact global JCT, as our example illustrates. In contrast, for an ordered coflow,

it is better to allocate as much bandwidth as possible to the highest-priority coflow, en-

suring all its flows are transmitted quickly and minimizing flow completion times. This

principle has been theoretically proved by prior studies: Sincronia demonstrates that the

optimal strategy for coflows with strict priority does not require explicit rate allocation

and achieves a solution within 2× of the optimal. Similarly, pFabric [35] asserts that, once

flow priorities are determined (as in our scenario), the primary role of rate control [167] is

to enforce these priorities while preventing network congestion.

Matching, Not Rate Allocation

Building on the above analysis, we conclude that the optimal strategy for transmitting

imbalanced EP coflows is to transmit all flows at line rate while avoiding network conges-

tion. Consequently, we propose a matching-based approach for EP coflows to schedule

all flows without incuring incast. The basic idea is to divide the transmission phase into

multiple sub-phases, with each sub-phase forming a matching within the EP group and

transmitting a portion of the flows accordingly.

Challenge and opportunity. A key challenge arises: how can we determine the flow sizes

of EP coflows a priori to maximize the matching scope within the EP group at each sub-

phase? The flow sizes for each sender-receiver pair are dynamic and can only be known

after the gate network computation (Table 5.1). Without this prior knowledge, efficiently
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assigning flows to sub-phases while preventing incast remains a significant challenge.

Fortunately, we observe that while the flow sizes are dynamic, the number of tokens to

be dispatched can be obtained from the training framework’s metadata [19]. Specifically,

to facilitate subsequent AlltoAll communication, frameworks such as Megatron-LM

preallocate appropriately sized receiving buffers on GPUs for each sender-receiver pair.

Although each worker requires only a subset of the transmission matrix—corresponding

to its own send and receive volumes—the framework simplifies the process by performing

a full AllGather operation across the EP group. The overhead of this operation is neg-

ligible compared to iteration time, i.e., ∼0.4ms vs. ∼5s based on our logs (§5.1.2). While

we observed this metadata in Megatron-LM [19], a widely used LLM training framework,

this practice is necessary in other frameworks as well, as GPU buffer reservation is re-

quired prior to transmission. In summary, by leveraging this transmission matrix, we can

transform flow sizes from unknown to known and design a matching strategy to transmit

all flows in the EP coflows without incurring incast.

Algorithm 3: Finding Matching Sequences and Weights
Input: Transmission matrix T ∈ Rn×n

Output: Matching sequences M1, M2, . . . , Mk and corresponding weights
w1, w2, . . . , wk

1 matchings← {};
2 weights← {};
3 T ← array(T);
4 while ∃Tij > 0 do
5 row_ind, col_ind← linear_sum_assignment(−T) ; // Hungarian

algorithm
6 M← zeros_like(T);
7 for i ∈ row_ind and j ∈ col_ind do
8 M[i, j]← 1;

9 matching_values← T[row_ind, col_ind];
10 matching_weight← min({Tij | Tij > 0});
11 weights← weights ∪ {matching_weight};
12 matchings← matchings ∪ {M};
13 T ← max(T −matching_weight×M, 0);

14 return matchings, weights;

Matching algorithm. We present our solution for finding matching sequences and

weights for EP coflows in Algorithm 3. Our approach leverages the classical Hungarian
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algorithm [94] to iteratively find the maximum matching in the residual transmission ma-

trix, greedily selecting as many flows as possible for transmission (Line 5). Specifically, the

algorithm iteratively computes the maximum matching, subtracts the matched flows from

the transmission matrix, and repeats this process until all flows are matched (Line 5-13).

The result is a sequence of matching flows and their corresponding weights. Using this se-

quence, the EP coflow transmission phase is divided into multiple sub-phases, with each

sub-phase involving transmitting flow portions proportional to the associated weights by

the workers in each matching. Since the input matrix is identical across all workers in the

EP group, the derived matching sequences and weights are also identical, eliminating the

need for synchronization among workers. Furthermore, by greedily selecting the maxi-

mum matching in the residual matrix, the algorithm guarantees both the optimal CCT for

EP coflows and line-rate transmission for the highest-priority coflows.

5.4 Implementation

We have implemented a fully functional Hermod prototype in C++ and Python, inte-

grating it with Megatron-LM, PyTorch, and NCCL. The model factor-driven inter-coflow

scheduling is enforced at both endhosts and switches, while the matching-based intra-

coflow scheduling is handled at endhosts in LibTorch. Specifically, on the endhost side,

we deploy Hermod scheduling policy on all devices as a single-threaded process. Each

scheduler instance maintains a priority queue for coflows, with priorities determined by

three factors obtained from Megatron-LM. To enforce scheduling at switches, we imple-

mented a new priority-aware networking layer to replace the default IB verbs. This layer

allows for configuring traffic priorities for collective operations at runtime, with the same

efficiency as IB verbs. At the switch side, we deploy policies to manage traffic with differ-

ent priorities, which are marked by DSCP values in the IP headers. To simplify encoding,

we compress the priority value from the three factors into a 6-bit DSCP: the top three bits

for microbatchID, one bit for coflow type, and two bits for layerID, following the strat-

egy outlined in §5.3.1. Additionally, we implemented an asynchronous AlltoAll opera-

tor using our matching-based algorithm in PyTorch to enforce the proposed transmission

logic for EP coflows.
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5.5 Evaluation

In this section, we evaluate Hermod’s performance by answering the following questions:

• How does Hermod perform in end-to-end LLM training? Testbed experiments (§5.5.2)

over three representative LLM models show that Hermod improves the training speed

by up to 1.44× over baselines in a 32-GPU cluster, and 1.38× speedup with varying

network bandwidths.

• How does Hermod perform in complex interleaved 1F1B scenario and in terms of

its components? Testbed experiments (§5.5.2) show that Hermod improves training

speed by 1.18× in interleaved 1F1B scenario. Additionally, its inter- and intra-coflow

scheduling contributes to 1.24× and ∼1.11× speedup, respectively.

• How does Hermod scale with increasing cluster size? Simulation experiments (§5.5.3)

show that Hermod scales effectively for large-scale model training, outperforming base-

lines by up to 1.50× in a 8192-GPU cluster, and 2.07× speedup with varying network

bandwidths.

5.5.1 Methodology

Our evaluation comprises both small-scale testbed experiments for moderate-size models

and large-scale simulations for large-size models.

S0

Leaf-0 Leaf-1

Spine-0 Spine-1

S1 S2 S3

100Gbps links

200Gbps links
Spine

Leaf

GPU Server

Figure 5.7: Testbed topology.

Testbed setup. The testbed depicted in Figure 5.7 consists of four A100 servers, each

equipped with eight NVIDIA A100 GPUs, 96 CPU cores (3.0GHz Intel Xeon Gold 6248R),
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503GB RAM, and two ConnectX-6 100Gbps NICs. The servers are connected via four

NVIDIA SN3700 Ethernet switches, forming a full-bisection rail-optimized network [14].

Within each server, the GPUs are interconnected by NVLink. All servers run Ubuntu 22.04

with CUDA v12.4, PyTorch v2.3.1, and NCCL v2.20.5.

Simulation setup. Our simulator is built on top of FlexFlow’s simulator [15] and the

packet-level simulator htsim [16], following a similar methodology as [162]. We extend

the FlexFlow simulator to generate DAGs that describe both computation and communi-

cation tasks across all coflow types. The DAGs are then fed into htsim to simulate packet

communication between GPUs. By default, we simulate a 128-server cluster, with each

server hosting eight GPUs, connected via a full-bisection fat-tree network with 100Gbps

links and a 1µs link propagation delay.

Configuration Models # of layers # of experts PP degree TP degree EP degree Sequence length Micro-batch size

Testbed
Qwen-MoE-12L 12 64 4 1 8 4096 4

Mixtral-8×7B 32 8 2 1 8 4096 4
GPT-3 13B 40 / 4 4 / 2048 4

Simulation
Qwen-MoE-24L 24 64 8 8 32 4096 8
Mixtral-8×22B 32 8 8 8 8 4096 8

GPT-3 175B 96 / 8 8 / 2048 8

Table 5.5: Models and default parallelization strategies used in our testbed and simula-
tion.

Models and parallelization strategies. We list both the models and the default par-

allelization strategies used in our testbed and simulation in Table 5.5. Specifically, we

use three representative model types: two sparse MoE models—Qwen1.5-MoE [175] and

Mixtral-MoE [79]—and a dense model, GPT-3 [39]. These models are used with moderate

sizes that fit within our testbed cluster, and we scale up the model sizes for large-scale

cluster simulations. We vary the DP degree to assess system scalability.

Baselines. We compare our system with the vanilla Megatron-LM [145] and the state-

of-the-art communication scheduler Lina [100]. As Lina is not open-sourced, we imple-

mented its key design in Megatron-LM. We do not compare with conventional coflow

schedulers, as they are not designed for LLM training, nor with ByteScheduler [130], as

its open-source code [12] is outdated and incompatible with the latest versions of NCCL

and PyTorch.

Metrics. We use # of tokens processed per second and iteration time as metrics to evaluate
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training performance.

5.5.2 Testbed Experiments

We conduct testbed experiments to evaluate Hermod’s performance in end-to-end LLM

training and to analyze the effectiveness of its individual components.

End-to-end performance

Scalability. We begin by evaluating the scalability of Hermod. We use the base par-

allelization strategies of (t,p,d,e) as (1,2,1,4), (1,2,1,8), and (4,2,1,1) for Qwen-MoE-12L,

Mixtral-8×7B, and GPT-3 13B, respectively, and scale the cluster size from 8 to 32 GPUs

by increasing the DP degree. For Mixtral-8×7B, we scale only from 16 to 32 GPUs, as the

8-server setting encountered out-of-memory issues.
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Figure 5.8: [Testbed] End-to-end training throughput with cluster size scaling up.

The results are presented in Figure 5.8. Megatron exhibits poor throughput perfor-

mance across all models as cluster size increases, as it does not account for the relationship

between coflows. For example, when training GPT-3 13B and scaling the cluster from 8

to 16 GPUs, we observe only a 1.39× speedup, despite a 2× increase in cluster size. Lina

performs better for MoE models but still underperforms for GPT-3 13B. This is because

Lina focuses solely on optimizing EP coflows, which provides no benefit for dense mod-

els. In contrast, Hermod outperforms both baselines in all models, particularly with GPT-

3 13B, where it achieves up to 1.44× higher throughput. The improvement is attributed to

Hermod’s cluster-wide scheduling across all coflow types and line-rate transmission for

highest-priority coflows.
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Different network bandwidths. We then evaluate the improvement Hermod can achieve

compared to the baselines under typical network bandwidth settings, ranging from 10Gbps

to 100Gbps. We use the parallelization strategies in Table 5.5 for each model in a 32-GPU

cluster. The available bandwidth is controlled by limiting the speed of Mellanox NICs

using the mlnx_qos command.
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Figure 5.9: [Testbed] End-to-end training iteration time with different network band-
width.

The results are shown in Figure 5.9. We observe that Hermod consistently outper-

forms the baselines across all models under varying network bandwidths. For instance,

when training Qwen-MoE-12L, both Hermod and Lina achieve higher throughput than

Megatron, primarily due to the large volume of EP coflows (>80% of total communica-

tion). Hermod outperforms Lina by 1.2×, thanks to its cluster-wide prioritization of ear-

lier microbatch coflows and PP coflows over DP coflows. When training GPT-3 13B with

100Gbps bandwidth, Hermod performs significantly better than the baselines, achieving

up to 1.38× higher throughput. This improvement is attributed to the absence of heavy

EP coflows, which amplifies the interference between PP and DP coflows. As a result,

Hermod fully utilizes the network bandwidth through inter-coflow scheduling with strict

priority and line-rate transmission, optimizing the global JCT.

Hermod Deep Dive

We conduct deep dive experiments to evaluate both the efficiency of Hermod in inter-

leaved 1F1B scenario and the effectiveness of its components.

Interleaved 1F1B scenario. We evaluate the effectiveness of Hermod in the complex in-

terleaved 1F1B scenario using the priority illustrated in §5.3.1 and the default paralleliza-

tion strategies in the 32-GPU cluster. The results in Figure 5.10 show similar performance
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Figure 5.11: [Testbed] Effectiveness of Her-
mod’s components.

improvements as §5.5.2: Hermod outperforms Megatron and Lina by 1.18× and 1.12×,

respectively, demonstrating that Hermod enhances training performance even in the in-

tricate interleaved scenario.

Effectiveness of components. We further investigate the individual contributions of Her-

mod’s components, specifically inter- and intra-coflow scheduling, in the 32-GPU clus-

ter with default parallelisms as well. The results in Figure 5.11 reveal that inter-coflow

scheduling is the primary contributor to performance improvement. With inter-coflow

only, the speedups for training Qwen-MoE-12L, Mixtral-8×7B, and GPT-3 13B already

reach 1.20×, 1.12×, and 1.40×, respectively, as it significantly reduces interference be-

tween coflows at the cluster level. Intra-coflow scheduling provides an incremental but

effective improvement for MoE models, while offering no benefit to GPT-3 13B, as the

coflows in dense models are balanced and transmit flows with fixed strategies (§5.3.2).

With both components enabled, Hermod achieves speedups of 1.33×, 1.24×, and 1.40×.

5.5.3 Large-scale Simulation Experiments

We further conduct simulations to evaluate Hermod when training large-size models in a

large-scale cluster.

Scalability. We evaluate the scalability of Hermod by scaling the cluster size from 1024

to 8192 GPUs with increasing DP degree. The results in Figure 5.12 show consistent re-

sults as the testbed experiments (§5.5.2), Megatron exhibits poor throughput performance
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Figure 5.12: [Simulation] Training speed with cluster size scaling up.

across all models as the cluster size increases, while Lina performs better than Megatron

in MoE models but still struggles with GPT-3 175B. Hermod scales well with the clus-

ter size, outperforming the baselines by up to 1.50×. When training with 8192 GPUs,

Hermod achieves 83% and 31% higher throughput compared to Megatron and Lina, re-

spectively. As the cluster size increases from 1024 to 8192 GPUs, the speedup becomes

more pronounced. We anticipate that Hermod’s performance improvements will be even

more significant when training larger models on larger clusters.

Different network bandwidths. We then evaluate the improvement of Hermod over the

baselines under different network bandwidth settings, ranging from 40Gbps to 400Gbps.

The parallelization strategies listed in Table 5.5 are used for each model in the 1024-GPU

cluster.
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Figure 5.13: [Simulation] Training speed in the cluster of 128 servers with 1024 GPUs with
different network bandwidths.

The results are shown in Figure 5.13. We observe that Hermod consistently outper-

forms the baselines across all large models under different network bandwidths. Specif-

ically, when bandwidth is limited, such as at 40Gbps, Hermod achieves up to 2.06×
speedup over Megatron due to its priority scheduling at both endhosts and switches.

When bandwidth is sufficient, such as at 400Gbps, the improvement of Hermod is less

pronounced as the network is no longer the bottleneck. However, Hermod still demon-
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strates better performance than the baselines, achieving up to 1.81× higher throughput

by minimizing the blocking caused by EP/PP coflows and overlapping DP coflows.

5.6 Discussion

Coflows with multiple paths. Similar to [33, 47, 49], we assume that the routing of flows

within and across coflows is determined by the network layer, utilizing mechanisms such

as ECMP or packet spraying. It is conceivable that training performance could be further

enhanced by co-designing the routing of flows alongside coflow scheduling [194]. De-

veloping optimal algorithms for this problem presents an interesting direction for future

research.

Multi-job scheduling. As highlighted in §5.2.1, Hermod focuses on coflow scheduling

for a single LLM training job within the cluster, which is a common practice in modern

training clusters [81, 171, 172]. However, a cluster may also have multiple jobs running

concurrently. One way to extend Hermod for this scenario is by assigning each job a dif-

ferent weight, which would be used to determine the priority of their respective coflows.

We leave the extension of Hermod to multi-job scheduling as future work.

Failure handling. Network failures are prevalent during training and can significantly

impact the performance of the training job [61, 70, 109, 132, 145, 150, 200]. One approach to

handle network failures is to identify them using diagnosis tools [81,109] and re-schedule

the affected coflows to alternative paths, though this may come at the cost of increased

JCT. We leave the development of scheduling algorithms for resilient coflows in LLM

training as a future research direction.

Relationship with network transport. Hermod is implemented on top of transport layer

with DiffServ support [25] for cluster-wide priority scheduling. We currently implement

Hermod upon RoCEv2 (elaborated in §5.4), and leave the extension to other transport

protocols, such as InfiniBand and MLT [157], as future work.

98



5.7 Related work

In addition to the related works mentioned in §5.1.3, we also summarize the related works

in the following aspects.

General coflow schedulers. General coflow schedulers [33, 46–49, 53, 188] focus on op-

timizing the average CCT or minimizing job tardiness (i.e., enabling more jobs to meet

their deadlines). While these schedulers address general coflow scheduling, they do not

account for dependencies between coflows derived from LLM training, which can signif-

icantly impact end-to-end training performance.

Network transport for ML Several works focus on optimizing network transport for ML

training. MLTCP [135] allows the communication phases of jobs to interleave with one

another, while MLT [157] takes advantage of ML workload characteristics to implement a

3-step progressive training scheme. These approaches are orthogonal to Hermod.

Joint optimizations with scheduling for training. SYNDICATE [117] accelerates DLRM

training by jointly optimizing collective operators and execution planning across hetero-

geneous network interconnects. TACCL [142] synthesizes communication algorithms to

generate efficient collectives for multi-node topologies. These works focus on optimizing

collective operations over heterogeneous networks and are orthogonal to our approach.

AI-specific Networks. Various AI-specific networks have emerged. TopoOpt [162] co-

optimizes topology and parallelization strategies. TPUv4 [84] uses optical networks to

improve AlltoAll traffic. Groq [31] develops a software-defined hardware intercon-

nect for deterministic training chips. Meta [61] discusses customized routing schemes,

optimized collectives, and network resiliency for large-scale RoCE AI networks. Alibaba-

HPN [132] proposes a dual-ToR design for failure resilience based on AI workload charac-

teristics. Megascale [81] co-designs algorithms and systems for training over 10,000 GPUs

and provides network diagnosis tools. Integrating Hermod into these systems could fur-

ther enhance LLM training performance.
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5.8 Conclusion

We present Hermod, a near-optimal coflow scheduler that orchestrates all coflow types

at the cluster level during LLM training. Hermod employs the insight that coflows are

characterized by three model factors, and designs (1) model factor-driven inter-coflow

scheduling to align with the LLM training DAG, and (2) matching-based intra-coflow

scheduling to maximize transmission rates for high-priority coflows. Extensive evalua-

tions validate that Hermod achieves its design goals. We believe our revisit of coflow

scheduling in LLM training will inspire further LLM training optimizations.
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CHAPTER 6

LEO: A HARDWARE-ACCELERATED
COMMUNICATION FRAMEWORK FOR

DISTRIBUTED SERVICES

In-Network Computing (INC) has emerged as a promising technique to mitigate the gap

between high-speed network bandwidth and stagnant CPU compute capability. By of-

floading partial or entire computation tasks to accelerators or switches located along the

datapath, INC alleviates the processing load on the CPU, reduces communication cost,

and enhances overall computation throughput.
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Figure 6.1: Categorization of In-Network Computing. The network stack in general can be
classified into two domains: the message domain above transport, and the packet domain
below transport. In this paper, the in-network computing within the message domain
(e.g., key-value store), is called message-level INC, while that within the packet domain
(e.g., packet encryption), is called packet-level INC.

INC can be categorized into two types: packet-level INC (PINC) and message-level

INC (MINC), based on whether the computation occurs on packets (below the transport

layer), or on messages (above the transport layer), as depicted in Figure 6.1. PINC, which

facilitates computation over packets, is primarily executed by in-network devices such as

bump-in-the-wire (BITW) smartNICs and programmable switches for datacenter appli-

cations such as in-network aggregation [96, 138] and network management [59]. MINC,
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which operates on messages, is executed by look-aside accelerators such as GPUs, FP-

GAs, and smartNICs. Owing to the prosperity of applications at end-host, MINC is de-

ployed in multiple scenarios in the datacenter, including key-value store (KVS) [97], dis-

tributed file system (DFS) [13], elastic block storage (EBS) [119], and distributed machine

learning (DML) [80], etc. Despite the extensive research on PINC application develop-

ment [62,174,193], the exploration in the realm of MINC has garnered less attention, given

its wide applicability and potential for performance improvement.

The development of MINC applications contains two major aspects: computation and

communication. For computation, the task is relatively straightforward, entailing the

independent programming of hardware acceleration functions in distinct accelerators.

However, communication presents a more intricate challenge, as it involves the effective

organization and implementation of dataflows among devices, thereby demanding ad-

vanced system expertise from the application developers1. We reveal three critical prob-

lems encountered in MINC communication development as follows:

#1: Poor portability across applications and hardware. When porting MINC appli-

cations to various hardware, the issue of poor portability becomes particularly evident.

Notably, there have been several MINC applications such as KVS offloaded to different

hardware, e.g., FPGA [97] or SoC-based smartNICs [111,168]. However, adapting applica-

tion dataflows between these hardware while maintaining high communication efficiency

demands substantial engineering efforts. These efforts include, but are not limited to, the

reimplementation of dataflows due to different communication APIs, and the restructure

of offloading strategies due to hardware performance variances, etc. Experienced engi-

neers have estimated that such porting could take from weeks to months to complete,

highlighting the significance of portability.

#2: Under-utilized resources in existing MINC systems. In MINC context, both CPU

and accelerator resources are available for use, providing an inherent opportunity to op-

timize performance by employing these resources simultaneously. Unfortunately, current

MINC systems [97, 119, 139] tend to neglect this opportunity, favoring instead to offload

tasks to accelerators as much as possible. Such neglect results in the loss of computational

resources in CPUs and communication resources available in CPU-NIC links.
1In the rest of the paper, we refer to the application developers as developers for short.
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#3: Complex configuration for direct transmission. When developing MINC com-

munication, configuring direct data transmission between devices is complicated due to

its inherent complexity. This complexity stems from several intricate operations such as

memory pinning and mapping, memory exposure, and address translation functions reg-

istration, etc. Such configuration is not only tedious but also error-prone for developers,

especially for those lacking specialized expertise in system configuration. Furthermore,

the different configuration APIs for varying hardware platforms complicate the configu-

ration process, raising the bar for developers.

Given these problems, we argue the need for a new framework that supports portabil-

ity across applications and hardware, incorporates hybrid resource utilization, and pro-

vides automatic configuration with unified APIs across devices. With such a framework,

developers would be able to offload routine communication tasks to the framework and

focus on the application-specific logic.

In this paper, we present LEO, a generic and efficient MINC communication frame-

work. Specifically, LEO makes the following three notable contributions:

• Generic abstractions for application and hardware. To facilitate portability, LEO

proposes generic abstractions for both application and hardware. Specifically, LEO in-

troduces a communication path abstraction to accommodate diverse communication re-

quirements of applications with predictable communication performance across hard-

ware. Utilizing this abstraction, application dataflows can be conceptually represented

as a sequence of paths with predictable communication performance, and hardware

is abstracted into different models based on its topology and associated pre-profiled

performance metrics, hence addressing #1.

• Built-in multi-path optimization. LEO integrates built-in multi-path communication

optimization to efficiently utilize resources in both CPU and accelerator. We formulate

the multi-path selection as a linear programming (LP) problem, which is solvable opti-

mally using classical LP solvers [118]. To facilitate real-time path selection, we propose

a heuristic algorithm that first generates a path selection priority list offline and then

selects the appropriate path online based on the monitored intra-host job completion

times (JCTs) of previous requests, reflecting the current path status, thereby addressing
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#2.

• Unified APIs and wrappers. To free developers from the burden of complex configu-

ration and facilitate easy programming, LEO exposes unified IB-style APIs along with

wrappers to adapt to various vendor-specific configuration APIs for supporting auto-

matic configuration scheme. This scheme adheres strictly to standard communication

protocols, i.e., PCIe DMA and RDMA, making it versatile enough to configure most

device types, therefore addressing #3.

We have implemented a prototype of LEO and evaluated it with four representative case

studies on three testbeds covering devices including FPGA-based and SoC-based smart-

NICs and GPU. Our experimental results confirm that LEO is generic and maintains high

performance for both applications and accelerators with negligible overhead. Specifically,

LEO provides 1.2-4.7× higher speedup than baselines in four case studies. Furthermore,

the heuristic multi-path solution employed by LEO yields 1.18–2.17× better throughput

than two greedy algorithms, and delivers comparable performance to the optimal solution

while satisfying the real-time selection demand. Finally, the overhead of LEO is negligible,

accounting for 10.3% of CPU utilization and 1.5µs for path selection.
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Figure 6.2: Comparison between traditional MINC communication frameworks and LEO.

Figure 6.2 summatively compares LEO against traditional MINC communication frame-

works. In traditional frameworks, supporting M dataflows over N hardware types ne-

cessitates developers to handcraft M×N solutions, each reliant on vendor-specific APIs.
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This process is further complicated by the need for tedious and error-prone direct data

transmission configuration, as well as handcrafted communication optimization strategy.

In contrast, LEO introduces expressive abstractions along with unified APIs and wrappers

that simplify the programming and configuration processes for both application and hard-

ware. This effectively reduces the development efforts to M+N solutions. Furthermore,

LEO incorporates a built-in multi-path communication to utilize both CPU and accelera-

tor.

6.1 Background and Motivation

We first provide the background of message-level in-network computing (MINC), and

then discuss the problems of MINC application development.

6.1.1 Category of In-Network Computing

In-Network Computing (INC) is a class of hardware acceleration approaches that offloads

part of or whole computation on the network datapath in order to free up CPU cycles,

reduce communication overhead, and boost application performance [82, 83, 96, 97, 104,

114, 138, 139].

Figure 6.1 shows the categorization of INC. Based on whether the computation occurs

on packets (below the transport layer) or on messages (above the transport layer), INC

can be further categorized into packet-level INC (PINC) and message-level INC (MINC).

PINC processes computation over packets by programmable devices within the network,

e.g., bump-in-the-wire (BITW) accelerators [59] and programmable switches [4], with each

packet size restricted within Maximum Transmission Unit (MTU), e.g., 1500 B. On the

other hand, MINC performs computation over messages by look-aside accelerators at

endhost such as GPUs, FPGAs, and smartNICs, with the message size ranging from sev-

eral bytes to 10s of GB.

The differences in the size of data processing unit and the location of accelerators re-

sult in distinct supported applications and developers: PINC favors boosting those ap-

plications whose semantics can be expressed within a packet size, e.g., in-network aggre-
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gation [96, 112, 138] and in-network cache [83, 114], and is maintained mostly by infras-

tructure maintainers; MINC, however, is prosperous in boosting applications that oper-

ate on a collection of data, including key-value stores (KVS) [97, 139], file compression

and decompression in distributed file system (DFS) [13], metadata operations in elastic

block storage (EBS) [119], and collective communication in distributed machine learning

(DML) [80, 157], etc., thanks to its wide range size, and is typically operated by applica-

tion developers. While there has been considerable attention towards PINC frameworks

in recent years [62, 98, 174, 193], frameworks for developing MINC applications have not

received equal focus, despite their wide applicability and the potential for substantial per-

formance improvements.

6.1.2 Problems of MINC Application Development

The development of MINC applications necessitates efforts in both computation and com-

munication aspects. For the computation aspect, the developers typically engage in the

programming of hardware acceleration functions for each device independently. Thought

time-consuming, this process is relatively easy to handle. The communication aspect,

however, poses greater difficulties. It demands not only effective coordination among

various devices but also the efficient implementation of dataflows for specific application,

making the communication aspect more challenging to handle.

We discuss three problems of MINC application development caused by the commu-

nication aspect using examples of state-of-the-art solutions.

Poor portability across applications and hardware. Portability is of paramount im-

portance in application development, particularly given the diversities both in upper-

layer dataflows and lower-layer hardware platforms. Notably, multiple MINC applica-

tions such as KVS have been successfully offloaded to different kinds of hardware plat-

forms including FPGA-based [97] and SoC-based smartNICs [111,168]. This process, how-

ever, obligates developers to reimplement application dataflows between devices using

hardware-specific APIs and communication modules, leading to increased yet redundant

development efforts. For instance, developing and testing dataflows with Register Trans-

fer Level (RTL) language for FPGA-based hardware can consume as much as two months
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for proof-of-concept (PoC). If using C language over SoC-based smartNICs, the develop-

ment time may be reduced, but still costs around two weeks2. Therefore, the task of port-

ing M dataflows to N hardware platforms may result in an average development time of

around 1.25×M×N months, posing substantial burdens for developers. A more efficient

approach is to develop M distinct dataflows and N hardware solutions independently, fol-

lowed by integration through an intermediate layer. This manner effectively reduces the

development time to 1.25×(M+N), resulting in considerable time savings, e.g., a reduction

of 8.75 months in the scenario where M is 5 for the type of dataflows in KVS [168] and N

is 3 for 3 kinds of hardware models. The time savings can increase with more kinds of

application dataflows and hardware with varying communication APIs.

CPU-only
Accelerator-only
Hybrid

M
ed

ia
n 

La
t. 

Sl
ow

do
w

n

1

10

100

1000

Throughput (Mrps)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Figure 6.3: The performance improvement with hybrid dataflows optimization.

Under-utilized resources in existing MINC systems. Existing MINC systems do not

maximally utilize the available resources in the hardware platform. Specifically, tradi-

tional MINC systems typically use the accelerator in the datapath for fast processing, but

ignore the usage of available host CPU resources3 [97, 119, 139]. That is, both the CPU

resources at endhost and the CPU-NIC links are unused during processing, exhibiting an

optimization opportunity of hybrid solutions that employ both the accelerator-only and

CPU-only dataflows. To reveal the potential of this optimization, we conduct an exper-

iment to emulate the processing of a KVS application at the server which is equipped

with one CPU and one smartNIC. We reuse the throughput results reported in [139], i.e.,

2These development time were estimated by experienced FPGA and SoC engineers in a major company.
3iPipe [111] supports hybrid usage of host CPU and accelerator, but its approach is inefficient when net-
work fluctuates, as revealed in §6.4.2.
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23.0Mops for 16-core CPU and 71.8Mops for 24-core smartNIC. For the hybrid solution,

we randomly select the dataflow for each request during processing. As shown in Fig-

ure 6.3, the throughput of the hybrid solution performs significantly better than those of

two single-path settings thanks to its better utilization of the available resources. This

result indicates that a middle-layer framework with hybrid dataflows optimization can

demonstrate better performance improvement for MINC applications.

1 void init() {
2 // Init device configuration
3 device_config(pcie_addr_acc);
4 device_config(pcie_addr_nic);
5 // Make devices visible between each other
6 expose_dev_mem(acc, nic);
7 }
8

9 void expose_dev_mem(dev1, dev2) {
10 // The involved configuration
11 configure_role(dev1, dev2);
12 reg_acc_mem(dev2);
13 reg_mapping_func(dev2_drv, dev1_func);
14 }

Listing 6.1: Example pseudocode of communication configuration.

Complex configuration for direct transmission. Configuring direct data transmission

between devices presents a significant challenge due to the complexity and variety across

different device types. In MINC context, direct device-to-device transfer is essential for

achieving high performance [9]. However, the facilitation of such transfer is notably dif-

ficult, particularly for developers lacking expertise in system configuration. Listing 6.1

describes pseudocode of the conventional two-fold configuration process: 1) the initializa-

tion of device configurations, such as memory pinning for accelerator and NICs (Line 3-4);

and 2) the exposure of device memory across devices for direct data transmission (Line 6).

Both processes demand sophisticated configuration. We set the second process as an ex-

ample for illustration. This process requires firstly configuring roles for the corresponding

two devices to figure out which device is responsible for activating the direct device trans-

mission (Line 11); then using the host CPU to register the accelerator’s mapped BAR mem-

ory in NIC (Line 12); and finally exposing the accelerator driver’s virtual-physical address

mapping function to the NIC driver (Line 13). These operations, while critical, are labori-

ous and susceptible to errors when executed by developers, particularly for those lacking
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system configuration expertise. Furthermore, the configurations vary across devices due

to the differences in configuration APIs, e.g., DOCA for BlueField DPU and Netronome for

Agilio smartNIC. Such variance raises both the study and migration costs for developers,

resulting in complex device configurations.

6.2 LEO Design

We aim to design a middle-layer communication framework for MINC applications that

addresses the above problems simultaneously. Specifically, this framework should achieve

the following design goals:

• Generic. The framework should be generic to support multiple kinds of dataflows and

diverse hardware platforms. This genericity enables the portability across applications

and hardware, and hence reduces the development workload for developers.

• Efficient. The communication performance this framework provides should be as effi-

cient as possible. Specifically, the framework should utilize the resources both in CPU

and accelerator with high efficiency.

• Easy-to-use. The framework should be easily used by developers with simple APIs and

support automatic communication configuration.

APP 1

Multi-path Optimization Automatic Configuration

Hardware Abstraction Unified Wrappers

LEO

Application Abstraction Unified APIs

APP 2 APP 3

GPU FPGA SmartNIC

Figure 6.4: LEO overview.
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Figure 6.4 shows an overview of LEO. LEO proposes the abstractions of application

and hardware for describing the diversities of both sides (§6.2.1). For efficiency, LEO de-

signs a built-in multi-path communication optimization for hybrid resource utilization

(§6.2.2). For ease of programming and configuration, LEO introduces the unified APIs

and wrappers to developers (§6.2.3) and facilitates automatic communication configura-

tion (§6.3). Finally, we put the above designs together to illustrate the architecture and

workflow (§6.2.4).

6.2.1 MINC Communication Abstractions

In this section, we start by introducing the abstraction of the communication path, which

can describe diverse dataflows and estimate their performance based on the attached

hardware transmission features provided by the lower layer. We then elaborate on the

application and hardware abstractions.

CPU-CPU Path CPU-Acc Path Acc-CPU Path Acc-Acc Path Physical Link

Responder
NIC

Acc CPU

Requester
NIC

CPU Acc

Path
LatencyPath MPSPath

Bandwidth
DS at

each link
Logical Link

Seq
Path 
Type

sum(lnk_lat)min(lnk_mps)min(lnk_bw)[fa, fb][CN, NC]C-C

sum(lnk_lat)min(lnk_mps)min(link_bw)[fc, fd][CN, NA]C-A

sum(lnk_lat)min(lnk_mps)min(link_bw)[fe, ff, fg][CA, AN, NC]A-C

sum(lnk_lat)min(lnk_mps)min(link_bw)[fh, fi, fj][CA, AN, NA]A-A

(a) Communication path.

Responder
NIC

Acc CPU

Requester
NIC

CPU Acc

Comp Time at
deviceDS at each linkPath ListReq DepReq Type

[[0, 3], [3.3, 0]][[8, 8], [64, 64]][C-A,C-C](PUT, ADDR)GET

[[0, 3.3], [3.3, 0]][[8, 8], [64, 64]][C-C,C-C](PUT, ADDR)GET

[[0, 3.3], [3.3, 0]][[8, 8], [64, 64]][C-C,C-C]NONEPUT

(b) Application abstractions.

Logical Link ANLogical Link CNLogical Link CA

[A-N][C-N][C-A]Physical Link

106.8 Gbps90.8 Gbps90.8 GbpsBandwidth

175 Mmps149.34 Mmps149.34 MmpsMPS

702 ns890 ns1000 nsLatency

Direct

NIC

CPU Acc

On-path

NIC

CPU Acc

Off-path

NIC

CPU Acc

(c) Hardware abstractions.

Figure 6.5: MINC communication abstractions. The blue features should be provided by
developers, and the red features can be automatically profiled by LEO.

Communication path. The communication path describes the logical links traversed

by the request from the requester to the responder, above the transport layer, with each

path associated with specific hardware transmission features. As shown in Figure 6.5a,

there are four types of communication paths in MINC communication, i.e., CPU-CPU

path, CPU-accelerator path, accelerator-CPU path, and accelerator-accelerator path. The

features of each path include:

• Logical link sequence: This describes the logical link sequence traversed by the request

from the requester to the responder from the perspective of developer. For example,
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the CPU-CPU path sequentially traverses CN (CPU-NIC) at requester and NC (NIC-

CPU) at responder.

• Data size at each link: This feature describes the size of data traversed at each link during

request processing. This value is defined by developers to be elaborated in the applica-

tion abstractions.

• Estimated path performance: These features are determined by metrics measured on the

hardware platform, as detailed in the hardware abstractions.

The benefits of the communication path abstraction are two-fold. First, it provides a

uniform abstraction to describe a dataflow from the requester to the responder, and can be

extended to describe multiple round trips by composing a sequence of multiple commu-

nication paths, thereby successfully describing the diverse dataflows from the application

layer. Second, it conveys estimated quantitative performance metrics derived from the

hardware layer to showcase its communication performance. These estimated metrics are

essential for multi-path optimization to analyze the communication interference across

paths (§6.2.2).

Application abstractions. Leveraging the communication path abstraction, the dataflow

of MINC communication can be conceptually expressed as a sequence of multiple com-

munication paths, with each path conveying a request for one round trip. Formally, the

application abstractions are formulated as follows, where we use KVS for illustration:

• Request type: This represents the type of the request for processing, e.g., GET and PUT in

KVS.

• Request dependency: This describes the dependency between requests to ensure correct

execution, as out-of-order cases may occur along with multi-path optimization (§6.2.2).

In KVS, a PUT request must be executed before a GET request if both access data at

the same address to avoid the GET obtaining a stale value. Dependency types include:

NONE (no dependency), ADDR (same address), and MSG (same message).

• Path list: This describes the sequence of communication paths traversed for the corre-

sponding dataflow. In KVS, a GET request has two dataflow types, whereas PUT has

only one, each involving two round trips due to the network amplification effect [168].
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• Data size at each link: This describes the predetermined size of the data structure tra-

versed at each link during request processing. In KVS, a GET request firstly traverses

the 8-byte key at each link and then traverses the 64-byte value on the same path. The

PUT request operates similarly.

• Compute time: This lists the compute time or memory access time at each endhost device,

which can be profiled before processing the application.

Hardware abstractions. The hardware abstractions can be explicitly described by the

hardware model of the accelerator and the associated performance metrics, i.e., band-

width, message per second, and latency [110]. We illustrate the hardware abstractions

in Figure 6.5c, showcasing the direct model of an FPGA-based hardware platform (§6.3)

transmitting 64B messages over PCIe Gen3x16. The hardware model is expressed in nodes

and edges, where each node represents a hardware device (CPU, accelerator, NIC), and

each edge represents a physical link between devices. Note that the mapping between

logical links and physical links is determined by the hardware model. We provide three

representative hardware model abstractions [111, 165]: direct, on-path, and off-path, and

support customized model abstractions for flexibility. The performance metrics are mea-

sured during initialization with profiling tools such as VTune [5] and Hostping [110] for

intra-host communication.

6.2.2 Multi-path Optimization

LEO should support efficient multi-path optimization for hybrid resource utilization. Un-

like previous multi-path works which select paths between hosts [115, 134], LEO selects

paths within each host, exhibiting several unique properties: i) Only intra-host communi-

cation needs to be considered since inter-host communication is handled and transparen-

tized by the hardware transport, e.g., RDMA [166]; ii) Sufficient information is available in

both the application and hardware, including communication paths for each request type,

profiled compute times, and hardware models.

These properties simplify the path selection problem, making it solvable theoretically.

We first formulate the path selection problem as a linear programming (LP) problem,

which is solvable optimally with off-the-shelf LP solvers [118] (§6.2.2). Next, we propose
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a heuristic algorithm to address the time constraints of the LP solver (§6.2.2). Finally, we

discuss some special cases (§6.2.2).

Symbols Description

P = {p1, p2, ..., pi} Set of all paths
L = {l1, l2, ..., ln} Set of all intra-host links
C = {c1, c2, ..., co} Set of all compute nodes
R = {r1, r2, ..., rt} Set of all request types
L(pi) = [ci1, li1, ..., cik] Sequence of nodes and links in pi
P(rt) = [pt1, ..., ptn] Path list of rt
∆tt Time interval between rt and rt+1
S(rt) Size of rt
BW(lj) Bandwidth capacity of lj
Ttr(lj) Base traverse time of lj
Tc(cj, rt) Compute time of cj for rt
X(pi)t = {0, 1} Whether select request rt to pi at t
Q(lj)t Queue latency of lj at step t
Q(ci)t Queue latency of ci at step t

Table 6.1: Key notations in problem formulation.

Problem Formulation

Table 6.1 lists the key notations used for problem formulation. We address the path se-

lection problem at a fine-grained, per-request level. Specifically, we discretize the entire

processing time into separate steps, with each step spanning ∆tt, representing the arrival

time interval between request rt and rt+1. Our primary objective is to minimize the total

intra-host JCT, which are the sum of their compute and communication time within hosts.

As the compute time Tc(cj, rt) is fixed and known in advance, our main focus is to mini-

mize the communication cost, defined as the sum of transmission time and queue latency

at each link and compute node.

While the transmission time is fixed, the queue latency varies over time and depends
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on the previous queuing status:

Q(ci)t =


max{Q(ci)t−1 + Tc(ci, rt)− ∆tt, 0} if ci ∈ L(pi)

&&X(pi)t = 1
max{Q(ci)t−1 − ∆tt, 0} otherwise

(6.1)

Q(lj)t =


max{Q(lj)t−1 +

S(rt)
BW(lj)

− ∆tt, 0} if lj ∈ L(pi)

&&X(pi)t = 1
max{Q(lj)t−1 − ∆tt, 0} otherwise

(6.2)

where Q(ci)t and Q(lj)t increases only if the request at time t selects pi and traverses ci

or lj, otherwise they decrease by ∆tt. While these equations contain non-linear max{·}
functions, we apply the big-M method to linearize them for resolution.

We denote the queue latency and traverse time of path pi at time t as Q(pi)t = ∑ci∈L(pi)
Q(ci)t +

∑lj∈L(pi)
Q(lj)t, and T(pi, rt)t = ∑lj∈L(pi)

Ttr(lj) + ∑cj∈L(pi)
Tc(cj, rt), respectively. For-

mally, the objective function and constraint of k-step path selection problem are:

min
t=n+k

∑
t=n

∑
pi∈P

X(pi)t · [Q(pi)t + T(pi, rt)t] (6.3)

∑
pi∈P(rt)

X(pi)t = 1 (6.4)

where (6.3) aims to minimize the total intra-host JCTs for all paths over a short horizon,

i.e., the next k request sequence predicted using historical request trace [178], while (6.4)

imposes the path selection constraint, ensuring that each request is assigned to exactly

one path.

Notably, when k=1, the LP algorithm simplifies to a greedy version that selects the

path with the least JCT for each request type. This approach optimistically assumes the

network can handle all queued requests. However, in practice, high request throughput

can cause queues to accumulate across paths, leading to high queuing latency and de-

graded performance, as our results reveal (§6.4.3).

Heuristic Multi-path Selection

Though promising, the time cost of LP solver [118] is notably high, e.g., more than 2.4 ms

in our evaluation (§6.4.3), which is beyond the real-time requirements of µs-level appli-
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cations. To address this, we propose a per-request-type heuristic algorithm for real-time

path selection. We observe a trade-off between selecting a queuing path with low latency

and an idle path with high latency. Adding a request to the queuing path increases the

queue latency for all subsequent requests until the queue is drained, leading to an extra

cost k̂ · [∑ci∈L(pi)
Tc(ci, rt) + ∑lj∈L(pi)

S(rt)
BW(lj)

] according to (6.3), where k̂ denotes the num-

ber of requests that will experience the queue latency caused by the current request. We

call it the communication toll of the path decision. Finally, the trade-off is transformed into

a balance between the immediate JCT gain and the incurred communication toll.

Algorithm overview. Our algorithm operates in two phases: first, we calculate the tra-

verse time and communication tolls for each request-path pair offline. Then, we estimate

the path status online based on the intra-host JCTs of completed requests to select appro-

priate paths.

In the offline phase, we calculate the basic path traverse time T(pi, rt)t = ∑lj∈L(pi)
Ttr(lj)+

∑cj∈L(pi)
Tc(cj, rt) and the communication toll Qtoll(pi)t = ∑ci∈L(pi)

Tc(ci, rt)+∑lj∈L(pi)
S(rt)

BW(lj)

for each path pi and request type rt as: We use the path traverse time T(pi, rt)t to generate

the initial path selection priority list for each request type, as the queue is initially empty

in each path.

Next, in the online phase, we select the appropriate path based on both the current JCT

and the communication toll. We denote k̂pi as the estimated number of requests that will

experience queue latency caused by the current request if selecting pi. Then, the JCTs of

the subsequent k̂pi requests will also increase by Qtoll(pi)t. Therefore, the total intra-host

JCT is:

Ttotal(pi)t = k̂pi ·Qtoll(pi)t + T(pi, rt)t (6.5)

By simply comparing the Ttotal(pi)t of all paths, we select the path with the minimal value

as the final choice, thus approximating (6.3).

Estimation of k̂pi . The key challenge of the algorithm is to estimate the value of k̂pi to

accurately reflect the status of each path. We achieve this by monitoring the intra-host

JCTs of previous requests, following a method similar to [95], and using these JCTs as

indicators of the current path status. Notably, modern RNICs widely support accessible
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hardware timestamps at the host [24, 95]. Therefore, LEO uses multiple hardware and

software timestamps to collaboratively monitor the intra-host JCT of each path.

REQ

RES
P

t1: t_enqueue

t2: t_sent

t3: t_remote_nic_rx

t4: t_remote_host_tx

t5: t_local_nic_rx
t6: t_local_rx

Local Tx Delay

Local Rx Delay

Remote
Delay

Figure 6.6: Timestamps used to measure different delays at endhosts. The hardware and
software timestamps are shown in blue and red, respectively. The intra-host JCT is the
sum of all delays shown in the figure.

Message Payload
Appended locally

0 …… 31 0 …… 31
Remote Delay NIC Rx Timestamp

Figure 6.7: Message format of LEO.

Figure 6.6 illustrates the event sequence of a request traversing the path. t1 and t2

are the times when the message is enqueued to the corresponding path and to the NIC

queue, respectively, recorded by LEO using the CPU. t3 is the time when the descriptor

of the request, i.e., CQE, is obtained at the server side by RNIC. t4 is the time when the

message is enqueued to the NIC queue, recorded by the CPU. Note that t4-t3 is calculated

by the server CPU and appended in the message header. t5 and t6 are the corresponding

receive timestamps for the response at the client side and are appended locally at the

client. Details of the message format is shown in Figure 6.7. Finally, the overall intra-host

JCT of the path is calculated as (t2 − t1) + (t4 − t3) + (t6 − t5).

Based on the above monitored intra-host JCT, we can now estimate the value of k̂pi for

each path. Specifically, we initialize k̂pi to 0 for each path and follow these procedures

during application runtime: i) Upon receiving a completed request, we compare the mon-

itored JCT with the base traverse time T(pi, rt)t; ii) If the monitored value is larger, it
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indicates the queue exists in the path, and we increase k̂pi by one, otherwise we reset k̂pi

to zero.

Discussion

Besides the common case, we additionally discuss several other cases as follows:

• Request dependency. Multi-path optimization can violate the sequential execution re-

quirement for some requests. Therefore, we pre-check the request dependency fea-

ture in the abstraction (§6.2.1) and ensure that incoming requests with dependencies on

other in-progress requests are executed on the same path.

• Parallel processing at compute node. For simplicity, the above formulation does not

emphasize parallel processing, but it can be easily extended to the parallel case. We

introduce a variable for the parallel capacity of the compute node and modify equations

(6.1) and (6.2) to increase queue latency when the capacity is exceeded. The heuristic

algorithm remains unchanged as k̂pi is not affected in the parallel context.

• NIC without timestamp support. LEO is currently built on hardware transport RDMA,

where NICs widely support hardware timestamp services [24]. For NICs that do not

support timestamp services, we may use software timestamps instead of hardware

timestamps or record the end-to-end JCT. Both methods could reduce the accuracy of

queue latency estimation. We leave accurate estimation for this scenario to future work.

6.2.3 LEO Programming

In this section, we illustrate LEO programming. We first introduce the unified LEO APIs

and wrappers, and then present the programming procedures of LEO.

APIs and wrappers. LEO wraps its communication and memory configuration together

with communication optimization in unified APIs and wrappers. As listed in Table 6.2,

LEO APIs and wrappers include:

• init initializes the MINC communication. It automatically sets up direct communica-

tion across devices based on the registered handlers and functions.
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APIs Description

init() Init LEO comm. context.
send(m) Two-sided send a message.
recv() → m Two-sided receive a message.
write(m) One-sided write a message.
read() → m One-sided read a message.
handle(m,r) Handle a message for role.

Wrappers Description

reg_comm_func(f,n,r) Register a comm. function.
reg_mem_func(f,n,r) Register a memory function.
reg_ts_func(f,n) Register a timestamp function.
reg_app_func(f,n,r) Register an application function.

Table 6.2: LEO APIs and wrappers. The developers can use this set of APIs and wrap-
pers to 1) initialize MINC communication, 2) perform communication operations, 3) regis-
ter hardware-specific communication, memory, timestamp service, and application func-
tions.

• send, recv, write, and read are simple RDMA ib_verbs-style communication APIs

for data transmission.

• handle is a unified API for handling incoming requests. Upon receiving a request, it

automatically invokes the registered application functions at the specified device role.

Note that the role can be either "cpu" or "acc".

• reg_comm_func is a function pointer wrapper that registers a hardware-specific com-

munication function, such as ibv_post_send for send operation in RDMA NIC.

• reg_mem_func is a function pointer wrapper that registers a hardware-specific mem-

ory function, such as malloc for memory allocation in the host CPU.

• reg_ts_func is a function pointer wrapper that registers a timestamp service func-

tion, such as rdtsc for timestamping in RDMA NIC.

• reg_app_func is a function pointer wrapper that registers necessary functions for

processing such as index searching in key-value store [169].
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Programming procedures. Leveraging the unified LEO APIs and wrappers, the develop-

ers can program MINC applications easily with the following programming procedures:

1. Implement application functions. The developers should implement the application

functions for processing the incoming requests at both CPU and accelerator.

2. Configure the communication path in YAML format based on the communication path

abstraction in §6.2.1.

3. Configure the dataflows for each request type in YAML format based on the application

abstractions in §6.2.1.

4. Write initial configuration code. The developers should write the initial configuration

code with LEO APIs and wrappers to register all necessary functions, pin memory,

configure memory mapping operations, and initialize the dataflows.

5. Finally, the developers should write the application processing code with LEO APIs.

6.2.4 LEO Architecture

CPU

Acc SQ

Acc NIC

Request
State
TableAutomatic

Configuration

Acc CQ NIC RQ NIC CQNIC SQ

Config Parser Request
Handler

Path Selector

Req Ctrl Path Resp Ctrl Path Metadata Path

PCIe

①

②

③

④

⑤

⑤

⑥

⑦

Figure 6.8: LEO architecture.

Taking the designs together, the architecture of LEO is depicted in Figure 6.8, which

includes five major components together with five queues [17, 21] for managing the com-

munication of accelerator and NIC.
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At the requester side, the workflow operates as follows:

1. The config parser parses the developer’s YAML files, and then sends the dataflow infor-

mation to the request handler as well as the hardware function wrappers to the automatic

configuration module.

2. The automatic configuration module sets up the communication and registers memory

regions between devices.

3. After the communication is established, the application inputs each request to the re-

quest handler. The handler registers the request in the request state table (RST) and

hands it over to the path selector.

4. The path selector analyzes the request’s historical path status in RST, executes the path

selection algorithm (§6.2.2), and then selects the appropriate path.

5. If the selected path is Acc-CPU or Acc-Acc, the accelerator should process the request

first. The request descriptor is enqueued to the Acc SQ and fetched by the accelerator.

When the accelerator finishes processing, it enqueues the completion queue element

(CQE) and notifies the request handler to update the request status, which then passes

the request descriptor to the path selector. Otherwise, the NIC handles the request

directly and this step is skipped.

6. The path selector then enqueues the request descriptor to the NIC SQ to transmit the

request to the network. The NIC can fetch the request data either from CPU or acceler-

ator, according to the descriptor information, and transmit it to the remote server.

7. When the NIC receives the corresponding response, it enqueues a CQE to NIC CQ, and

the request handler obtains the hardware timestamp in CQE. The request handler then

calculates the intra-host JCT of the request (§6.2.2), and updates the request status in

RST.

At the responder side, the workflow operates similarly.
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6.3 Implementation

We have implemented a fully functional LEO prototype for developing MINC commu-

nication. It currently supports representative FPGA-based smartNICs [11], SoC-based

BlueField-3 [6] and GPU. Below we introduce the implementation details of LEO, our

efforts undertaken for an FPGA-based emulation platform, and illustrate our automatic

configuration scheme for different devices.

LEO Implementation. We implement all modules in Figure 6.8 in C/C++ and integrate

LEO with MLNX_OFED-5.4-3.0.3.0, CUDA 12.4, NCCL 2.20.5, and DOCA 2.2.2. Specifi-

cally, we implement the config parser and automatic configuration as tools for developers

to facilitate offline communication configuration, and the other modules as daemon pro-

cesses during runtime. We create the 5 QPs in userspace for ease of deployment and to

avoid kernel syscall overhead. For the timestamp service, we set flags of CQs for hardware

timestamping [23], and record the software timestamps when enqueuing and dequeuing

descriptors. To calculate the time interval, we enable PTP in NIC and convert HCA clock

to ns using mlx5dv_ts_to_ns before calculation. While the timestamp is 64-bit, we

use a 32-bit value to represent the time interval of remote delay to reduce the message

header overhead. Additionally, we implement the LP algorithm in the path selector using

CPLEX [118] and the heuristic algorithm purely in C++, both running on separate threads

for online path selection.

FPGA-based Emulation Platform. To verify the genericity of LEO on different hardware

models, we implement an FPGA-based hardware platform that contains a Xilinx VU35P

FPGA [11] with a PCIe Gen3x16 interface and a 100 Gbps Ethernet port, and implement

the logic of both the accelerator and RDMA NIC on this platform. Overall, we undertake

two primary developments:

• Improving the efficiency of PCIe P2P. A conventional MMIO from host to accelerator

offers a maximum capacity of 64 bytes per operation due to CPU limitation [3], thereby

compromising the I/O efficiency involved in transferring bulk data in PCIe P2P sce-

nario. Thus, we design the corresponding logic to support arbitrary bit read/write

operations for PCIe P2P, bypassing CPU.
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Figure 6.9: Hardware platform architecture.

• Emulating hardware model. We modify the transmission logic between modules in

FPGA to emulate different hardware models. As shown in Figure 6.9, for the direct

model, we isolate the accelerator and NIC from each other and allow their associated

end-points (EPs) to connect with a common PCIe switch. For the on-path model, we

connect the accelerator and NIC via AXI and only allow the accelerator-associated EP0

to interconnect with the CPU. For the off-path model, we only open the EP1 channel

and add a router within RNIC to allow packet routing to/from the accelerator.

Modules LUT Registers BRAM URAM

PCIe P2P 3.3% 1.66% 3.01% 5%
Router 0.12% 0.09% 3.95% 0%

EBS lookup functions 4.8% 3.8% 12.9% 8.5%

Table 6.3: Resource usage of hardware platform in Xilinx VU35P FPGA board.

We list the detailed hardware resource consumption in Table 6.3. Note that the EBS

lookup functions are developed for emulating three lookup functions in EBS which con-

sumes on-chip resource, while for KVS, its index lookup consumes no on-chip resource as

we store the large KV table (20M kv-pairs) in FPGA HBM (§6.4.1).

Automatic Communication Configuration. To free developers from the burden of com-
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plex configuration, LEO provides automatic communication configuration across devices

with wrappers provided by developers. For general PCIe devices such as FPGA and

RNIC, the automatic configuration process is as follows. First, the FPGA memory is

mapped to the PCIe BAR space when empowering the device. Then LEO registers the

corresponding BAR space and host memory as different memory regions (MRs) in RNIC,

along with their virtual-to-physical address translation tables or function hook. Finally,

LEO establishes inter-host communication following the classical RDMA initialization

manner and exchanges memory region information between both sides to enable direct

data transmission between local and remote devices. As this scheme strictly adheres to

PCIe P2P and RDMA protocols [10,17], it is general for devices, e.g., we enforce the scheme

to configure BlueField with our wrappers using DOCA APIs. Moreover, we extend this

scheme to support multiple accelerators case such as GPU-direct-FNIC with an additional

role configuration. Specifically, LEO initially designates one of the accelerators as the mas-

ter for activating direct transmission, and the other as the slave, e.g., FPGA as master and

GPU as slave, while keeping the other processes unchanged. Consequently, developers

can facilitate direct transmissions between both intra- and inter-host devices without re-

quiring expertise in system configuration.

6.4 Evaluation

In this section, we evaluate LEO’s performance to answer the following questions:

• How generic and efficient is LEO against the state-of-the-art frameworks when pro-

cessing each application? We show that LEO supports all types of MINC applications

across different testbeds listed in Table 6.4, and can achieve 1.2–4.7× better performance

than state-of-the-art frameworks (§6.4.2).

• How effective is LEO in terms of its component and overhead? We show that LEO’s

components effectively improves the performance of MINC communication (§6.4.3).

Specifically, the multi-path optimization reduces the median latency of MINC commu-

nication by 1.3×. Besides, we also demonstrate that LEO introduces negligible CPU

overhead and low processing time (§6.4.3).
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Application Testbed HW Model Baseline

KVS F-NIC Off-path DrTM-KV [169]
DFS BF-3 Off-path DOCA [13]
EBS F-NIC On-path Solar [119], iPipe [111]

DML G+F-NIC Direct NCCL [7]

Table 6.4: Representative MINC applications with their employed testbed configurations,
hardware models, and baselines.

6.4.1 Experimental Setup

Testbed configurations. We run our experiments using three testbed configurations: F-

NIC, G+F-NIC, and BF-3. All testbeds use the same topology, i.e., two servers directly

connected with each other, but with different devices:

• F-NIC adopts Intel servers with 8-core Xeon Silver 4110 CPU, 192GB memory, PCIe 3.0,

100GE cables, and Xilinx VU35P FPGAs.

• G+F-NIC employs the same servers as F-NIC with the addition of NVIDIA A100 GPUs

connected.

• BF-3 uses Intel servers with 32-core Xeon Silver 4309Y CPU, 512GB memory, PCIe 4.0,

200GE cables, and NVIDIA BlueField-3.

Case studies & baselines. To extensively evaluate LEO, we implement four representa-

tive MINC applications running on three types of hardware models and compare them

with state-of-the-art baselines, as listed in Table 6.4.

• Key-value store: In-memory disaggregated key-value stores are widely deployed in

modern data centers [168, 169]. We implement KVS by executing the index lookup in

FPGA and facilitating one READ to retrieve the index from FPGA and another WRITE/READ

for the value in host memory. We compare LEO with DrTM-KV [169] over the same off-

path F-NIC testbed.

• Distributed file system: File replication is a key pillar in DFS and typically offloads file

compression to an accelerator for processing [168]. We use DOCA [13] as the baseline

124



which compresses/decompresses 1MB file with 256KB IO chunks and a 51.8% compres-

sion ratio, and compare with LEO using the same off-path BF-3 testbed.

• Elastic block storage: Elastic block storage is a fundamental storage service for cloud

providers [119]. As Solar [119] is not open-sourced, we implement its offloaded QoS,

block, and address lookup functions in FPGA to emulate read requests4. iPipe [111] is

a customized on-path smartNIC framework that supports dynamic function placement

between the host CPU and smartNIC. We emulate it by first profiling the base JCT

of offloading all functions in FPGA and then online invoking functions in the CPU to

emulate actor migration5 when current JCT is larger than base JCT and vice versa. We

conduct these experiments using the same on-path F-NIC testbed.

• Distributed machine learning: Distributed machine learning has been deployed exten-

sively in modern data centers [7, 9, 80, 156]. We use only the RNIC module in FPGA

and configure GPUDirect-FNIC with automatic configuration. We compare LEO with

NCCL [7] over the same direct G+F-NIC testbed.

In all experiments, we add delays at the requester NIC to simulate network variation

between hosts [190], with the value ranging from 3 to 9µs according to [189].

Metrics. We report the median latency under different request rates for latency-intensive

key-value stores and throughput for other throughput-intensive applications.

6.4.2 End-to-end Application Performance

Key-value store. We use YCSB-C and B [50] as our workloads, as used in prior

work [169]. The YCSB-C workload only contains the GET request. As shown in Fig-

ure 6.10a, we observe that the LEO counterpart without multi-path support starts to in-

crease its median latency when system workload is above 5Mrps, outperforming the CPU-

based DrTM-KV by∼1.5×. The reason for the higher sustainable throughput is attributed

to the efficient computation at accelerators. LEO outperforms both its variant and DrTM-

KV by delivering stably low latency and higher sustainable throughput. Specifically, LEO

4The SEC and CRC parts in Solar are handled by RDMA transport.
5We omit the procedure of actor migration for ease of emulation, but it can actually degrade performance.
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(b) YCSB-B workload.

Figure 6.10: Performance of key-value store. LEO delivers as much as 2× and 3× sustain-
able throughput compared to the baselines, respectively.

delivers 1.2–2× higher sustainable throughput over its counterparts, as its system demon-

strates higher computation capacity by introducing both CPU and accelerator for handling

the incoming request streams. Meanwhile, LEO exhibits stably low median latency with

the increasing of the offered load. The reason comes from its careful path-selection al-

gorithm, which helps LEO to balance the load among multiple computation sources and

mitigate the potential temporal overload.

For the YCSB-B workload, it contains both GET and PUT requests. For the PUT re-

quest, it can only be processed by the CPU, since there are currently no sophisticated

mechanisms for maintaining data consistency at the accelerator. The scheduling in this

workload is more complex as the placement constraints and the uniform workload re-

garding execution times. As shown in Figure 6.10b, both LEO and its variant deliver as

much as 3× higher throughput than DrTM-KV, while LEO achieves the highest through-

put. The reason aligns with the case in Figure 6.10a. This experiment further demonstrates

the benefits of LEO’s incorporation of CPU and accelerator and effective scheduling with

balancing load among multiple paths.

Distributed file system. We conduct the experiments by compressing the 1MB file at the

requester and write to the responder for decompression. Figure 6.11 shows the through-

put with an increasing number of cores on both sides. We find that DOCA performs the

worst because its compression time is longer than that of the CPU, i.e., 2.18ms vs 0.89ms,

due to the fact that the compression firmware on BF-3 is less powerful than a single core at
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Figure 6.11: Performance of distributed file system. LEO outperforms baselines by 1.19-
4.69× as the number of cores increases.

the server. When increasing the number of cores, both approaches show improved perfor-

mance due to better decompression pipeline at the responder. Overall, LEO outperforms

DOCA and CPU by 1.19–4.69× as the number of clients increases. The enhancement is

attributed to LEO’s effective utilization of hybrid resources.

Elastic block storage. We use the same experiment setting of [119] and compare the 64KB

throughput and 4KB IOPS (I/O per second) of LEO with CPU, Solar, and iPipe.
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Figure 6.12: Performance of elastic block storage. LEO achieves as much as 1.75× and
1.91× better throughput and IOPS compared to baselines respectively.

The results shown in Figure 6.12 reveal that Solar achieves better performance than

CPU-based solution, as it reduces the processing latency via dataplane offloading. iPipe

is better for migrating some functions to CPU according to the online end-to-end JCTs.

It achieves better throughput and IOPS by 1.04–1.25× and 1.19–1.71×, respectively, than
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CPU and Solar with different number of cores. However, it performs worse than LEO as

its migration signal, end-to-end JCT, can be affected by network variation. The fluctuation

may result in a false migration from a good offloading placement to a worse one. Besides,

we remind readers that we did not emulate the actor migration process, which could

result in even worse performance with frequent migrations. Overall, LEO demonstrates

the highest performance among all, thanks to its better resource utilization with multi-

path and intra-host JCT signal for load balancing. Specifically, with LEO, the throughput

of 64KB read increases by 1.14–1.75× given the varying number of CPU cores, while the

IOPS of 4KB read also exhibits a rise of 1.1–1.9×.
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Figure 6.13: Performance of DML allreduce. LEO achieves on average 4× higher through-
put than NCCL for message sizes ranging from 4KB to 1GB, and comparable throughput
for short and long messages.

Distributed machine learning. Allreduce is a key communication pattern in distributed

machine learning, with varying message sizes representing different sizes of gradients

and parameters. We compare the allreduce throughput of LEO, NCCL, and OpenMPI

with different message sizes. As shown in Figure 6.13, LEO consistently delivers the high-

est throughput in all message sizes. For large messages (≥1MB), LEO shows a substantial

throughput improvement over OpenMPI. Compared to NCCL, LEO’s throughput is on

average 4.08× higher for messages ranging from 4KB to 1GB. Other message sizes per-

form similarly. OpenMPI performs worst among all due to the low processing capability

of the CPU. The benefit of LEO is attributed to its use of idle compute resources through

its multi-path design, allowing it to saturate the link faster than NCCL.
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6.4.3 LEO Deep Dive
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Figure 6.14: Effectiveness of LEO multi-path optimization. The performance of the heuris-
tic algorithm is 1.18–2.17× better than greedy algorithms, and close to the optimal solu-
tion.

Effectiveness of path selection algorithm. We compare the heuristic algorithm adopted

in LEO with two greedy algorithms, i.e., selecting path with minimal end-to-end JCTs

(Greedy-E2E) and minimal intra-host JCTs (Greedy-Intra), as well as the optimal LP al-

gorithm in the key-value store application. We do not predict the request sequence but

directly pre-record the history of the request sequence and solve the LP problem offline

for each step to obtain the performance of the optimal solution. The results are shown

in Figure 6.14. We observe that Greedy-E2E performs the worst as it can misselect paths

due to network fluctuation between hosts. Greedy-Intra performs better since it only uses

the intra-host JCT for selection. However, this algorithm operates in a greedy manner

but overlook the temporal queuing delay effect, i.e., the communication toll, caused by

the current path decision (similar to k=1 algorithm illustrated in §6.2.2), and therefore

performs poorly over a horizon of requests. LEO demonstrates 1.18–2.17× performance

gain over the two greedy algorithms, stemming from both the intra-host JCT to reflect

path status and the consideration of communication toll. Besides, we also observe that

LEO achieves comparable performance to the optimal solution, which knows the whole

request sequence in advance. This observation reveals the effectiveness of the heuristic

algorithm in LEO.

LEO framework overhead. We seek to understand the framework overhead of LEO. We
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measure the CPU utilization of the heuristic algorithm, the processing time of algorithms

and analyze the header overhead. We find that LEO can run the heuristic algorithm for

µs-level applications, with an average cost of 10.3% CPU utilization. We also report the

path selection time for one request. Specifically, the LP solver takes as much as 2.4ms, and

the heuristic algorithm consumes only∼1.5µs, demonstrating its applicability in real-time

path selection. For the message header, it takes up as much as 4 bytes for each response

message. The overhead depends on the response size, ranging from 1.6×10−5 for DFS

with 256KB chunks to 5.9% for KVS with 64B values in the case studies.

6.5 Discussion

Dataflows with multiple accelerators. While we focus on the MINC communication

with only a single accelerator in this paper, we claim that LEO can be easily extended to

support multiple accelerators. Specifically, the automatic configuration (§6.3) supports

the case of multiple accelerators. Besides, the multi-path optimization (§6.2.2) is also ap-

plicable to multiple accelerators, i.e., adding the compute time of extra accelerators to the

corresponding path.

Multi-tenancy. LEO does not yet support multi-tenancy. This is because MINC applica-

tions are usually processed solely on the accelerator for high performance. To support the

multi-tenancy scenario, LEO should be able to support different scheduling policies for

fairly sharing the accelerator among different applications. Besides, the multi-path opti-

mization should be maintained by the infrastructure maintainers for a global view among

applications. We leave the support of multi-tenancy as future work.

Deployment at scale. At present, LEO supports only single connections and is not yet

scalable to large-scale clusters involving multiple concurrent connections. To enable high

performance in such environments, significant modifications are required in two key ar-

eas: (1) the communication abstractions, particularly hardware abstractions, and (2) the

multi-path optimization. The hardware abstractions can be enhanced by incorporating av-

eraged performance metrics, while the multi-path optimization should be managed with

a global perspective by infrastructure maintainers, as discussed above. Expanding LEO

for large-scale deployments presents a promising direction for future research.
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6.6 Related work

Network-software co-design of INC. There have been several systems with network-

software co-design for INC, as illustrated in §6.1.1. These frameworks are usually de-

signed for specific applications, and are not flexible enough to support the development

of other applications.

PINC frameworks. There have been several frameworks proposed recently to facilitate

PINC application development. NetRPC [193] advocates an RPC programming model

for software developers to describe their PINC applications. Lyra [62] offers a one-big-

pipeline abstraction to allow developers to express their intent with simple statements.

ClickINC [174] designs a unified and automated workflow for developers to embrace

PINC programming and deployment. These works are generic to serve PINC hardware

rather than MINC hardware.

MINC frameworks. iPipe [111] and Floem [131] are two representative frameworks for

MINC applications. iPipe proposes an actor-based framework to automate fine-grained

actor migration between CPU and on-path smartNICs. Floem is a smartNIC compiler that

eases the developers’ programming effort. However, these frameworks are customized

for smartNICs only, but do not support other PCIe devices such as GPUs and FPGAs.

Moreover, they either do not support hybrid resource utilization or perform poor load

balancing when inter-host network fluctuates (§6.4.2).

Hardware-controlled communication interface. PANIC [106] is a high-performance NIC

design that supports diverse offloading functions for multi-tenancy. FpgaNIC [165] allows

GPU to directly drive NIC for fast processing. ARK [76] proposes a GPU-controlled hard-

ware DMA engine that eliminates the I/O overhead on GPU cores. FlexDriver [56] builds

an on-accelerator hardware module to support the direct drive of the accelerator upon

NICs. These optimized hardware interfaces are orthogonal to LEO and can be integrated

into LEO.
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6.7 Conclusion

This paper presents LEO, a generic and efficient communication framework for MINC

applications. LEO makes the following major contributions: i) proposing generic abstrac-

tions for both application and hardware; ii) designing a built-in multi-path communica-

tion optimization to enhance communication efficiency; iii) exposing unified APIs and

wrappers to simplify programming for developers and support automatic communica-

tion configuration. We have implemented a prototype of LEO and evaluated it extensively

with four case studies over three testbeds. Our results confirm that LEO is both generic

and efficient for MINC applications. We hope LEO could serve as a stepping stone for the

development of MINC applications and inspire research for MINC.
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CHAPTER 7

CONCLUSION AND FUTURE WORKS

7.1 Conclusion and Discussion

7.1.1 Conclusion

My PhD research centers around one question: How to build communication-efficient dis-

tributed training systems to address the varied communication issues encountered during end-

to-end distributed training? This dissertation delineates my research efforts on building

communication-efficient distributed training systems through paradigm-specific optimiza-

tions for the model training stage and hardware-accelerated optimizations for the data

and model management stages. The resulting optimized systems are full-stack solutions

tailored for hardware-accelerated GNN and LLM training.

• For the sampling-based GNN training paradigm, we optimize the graph sampling algo-

rithm with DGS (Chapter 3). DGS is a communication-efficient graph sampling frame-

work for distributed GNN training. Its key idea is to reduce network communication

cost by sampling neighborhood information based on the locality of the neighbor nodes

in the cluster, and sampling data at both node and feature levels. As a result, DGS

strikes a balance between communication efficiency and model accuracy, and integrates

seamlessly with distributed GNN training systems.

• For the full-graph GNN training paradigm, we optimize the parallelization strategy

with G3 (Chapter 4). G3 incorporates GNN hybrid parallelism to scale out full-graph

training with meticulous peer-to-peer intermediate data sharing, and accelerates the

training process by balancing workloads among workers through locality-aware itera-

tive partitioning, and overlapping communication with computation through a multi-

level pipeline scheduling algorithm. Although initially tailored for GNN training, we

believe the fundamental principle of peer-to-peer sharing data in hybrid parallelism

can be generalized to other training tasks.
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• For the LLM training paradigm, we orchestrates all coflow types at the cluster level dur-

ing LLM training with Hermod (Chapter 5). Hermod employs the insight that coflows

are characterized by three model factors, and designs (1) model factor-driven inter-

coflow scheduling to align with the LLM training DAG, and (2) matching-based intra-

coflow scheduling to maximize transmission rates for high-priority coflows. Extensive

evaluations validate that Hermod achieves its design goals. We believe our revisit of

coflow scheduling in LLM training will inspire further LLM training optimizations.

• To enhance communication performance in distributed services, we integrate hardware

acceleration with LEO (Chapter 6), a hardware-accelerated communication framework

for distributed services. LEO offers 1) a communication path abstraction to describe

various distributed services with predictable communication performance across edge

accelerators, 2) unified APIs and wrappers to simplify programming experience with

automatic communication configuration, and 3) a built-in multi-path communication

optimization strategy to enhance communication efficiency. We believe LEO will serve

as a stepping stone for the development of hardware-accelerated distributed services in

distributed training systems.

7.1.2 Discussion

System deployment. All of these optimized systems require code modifications to dis-

tributed training frameworks and libraries such as PyTorch, Megatron, DGL, and IB verbs.

Fortunately, DGS, G3, and Hermod can be readily deployed using our pre-configured

Docker containers1 [26, 27]. However, LEO necessitates hardware-level modifications for

data movement operations, making its deployment more complex. We believe that the

optimized systems presented in this dissertation will serve as a foundation for further

research on communication-efficient distributed training.

Adapting methodologies across systems. We envision that the methodologies devel-

oped in DGS, G3, and Hermod can be extended to complement one another. For ex-

ample, G3 incorporates intermediate peer-to-peer communication among workers, which

can be modeled as coflows. The coflow scheduling methodology from Hermod can be ap-

1The Docker image for Hermod will be made publicly available upon publication.
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plied to G3 by formulating the GNN training DAG and scheduling coflows accordingly.

Likewise, the multi-level pipeline scheduling approach in G3 can optimize fine-grained

request scheduling in the hardware accelerators in LEO. Unifying and extending these

methodologies across different systems enables the development of more communication-

efficient distributed training systems.

7.2 Future Directions

Network Transport for Scale-up Networks. Scale-up networks, defined as network

architectures within computer clusters, are designed to maximize intra-cluster communi-

cation bandwidth while minimizing latency. These networks have become indispensable

in the AI computing era, largely driven by the exponential growth in demand for ultra-

high interconnect bandwidth, reaching terabits per second (Tbps). Traditionally, these

networks utilize simple load/store primitives to achieve lower latency than DMA [28,29],

along with fine-grained compute-communication overlap to reduce the context-switching

overhead between CPUs and GPUs. However, scalability remains a challenge due to lim-

ited chip buffer capacity. Unlike DMA, which stores only data indices in IO-Dies, load/s-

tore primitives store complete data to prevent overwriting by subsequent instructions and

to enable retransmission when necessary. While this approach improves data integrity, it

imposes greater memory demands, exacerbating scalability limitations. Furthermore, the

absence of effective congestion control and load balancing mechanisms in these networks

can degrade performance under heavy traffic. Addressing these limitations requires the

development of next-generation network transport that integrates reliability, congestion

control, and load balancing for scalable scale-up networks.

Error-tolerant Data Loading. Existing works primarily focus on the core training process,

but neglect the potential issues faced in other necessary processes such as data loading.

However, prior studies [70] have shown that data loading can account for up to 29.5% of

the total training time, leading to significant GPU idling. Moreover, in LLM training, the

tremendous volume of data for loading can be error-prone. This is due to the fact that data

loading relies on distributed cache to speed up the loading process, requiring sophisticate

and resilient operations such as cache update coordination, etc. These operations are data
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dependent and hence instable across training jobs. In this way, an error-tolerant data

loading is worth investigating to improve the robustness of LLM training.
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