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Abstract

Internet congestion control (CC) has long posed a challeng-
ing control problem in networking systems, with recent
approaches increasingly incorporating deep reinforcement
learning (DRL) to enhance adaptability and performance.
Despite promising, DRL-based CC schemes often suer from
poor fairness, particularly when applied to network environ-
ments unseen during training. This paper introduces Jury,
a novel DRL-based CC scheme designed to achieve fairness
generalizability. At its heart, Jury decouples the fairness con-
trol from the principal DRL model with two design elements:
i) By transforming network signals, it provides a universal
view of network environments among competing ows, and
ii) It adopts a post-processing phase to dynamically module
the sending rate based on ow bandwidth occupancy estima-
tion, ensuring large ows behave more conservatively and
smaller ows more aggressively, thus achieving a fair and
balanced bandwidth allocation. We have fully implemented
Jury, and extensive evaluations demonstrate its robust con-
vergence properties and high performance across a broad
spectrum of both emulated and real-world network condi-
tions.
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1 Introduction

Internet congestion control (CC) has become one of the most
classic control problems in networking systems. Recently,
inspired by great successes achieved by deep reinforcement
learning (DRL) in various aspects (e.g., games [29, 30, 38],
computer systems [16], and networking [26, 27, 46]), CC re-
searchers are exerting eorts on incorporating DRL into the
CC problem [1, 18, 24, 41]. Due to the automatic learning pro-
cess, DRL-based CC schemes provide superior performance
over conventional protocols while freeing networking engi-
neers from the tedious manual tuning of hard-wired control
rules.

Despite being promising, DRL-based solutions are far from
a silver bullet for the CC problem, primarily due to their
inconsistency in meeting essential properties of CC tasks,
particularly with regard to fairness. Internet congestion con-
trol tasks necessitate a guaranteed fair convergence prop-
erty. However, the neural network models underlying DRL
pipeline operate by stochastically updating and approximat-
ing the policy [22]. This stochastic nature complicates the
integration of inherent properties such as fairness into the
model.
To achieve fairness for learning-based CC schemes, pre-

vious protocols can be divided into three categories: (i) on-
line exploration schemes that adopt trial-and-error online
exploration (e.g., Vivace [8], Libra [9]), where the fairness
is achieved through the convergence of a social concave
game [12]; (ii) hybrid control schemes (e.g., Orca [1]) that
introduce classic algorithms (such as Cubic) to attend to con-
vergence properties; (iii) pure DRL-based schemes that add
fairness-related metrics into the learning process to teach
the model to behave fairly (e.g., Pareto [10], Astraea [23]).

However, current solutions fail to achieve ecient fairness
across various network environments. On one hand, solu-
tions in (i) require testing dierent sending rates/policies
in real-time, observing the feedback, and deciding which
action is good for the next iteration. The exploratory pro-
cess consumes multiple RTTs, leading to slow convergence
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when the RTT is large. On the other hand, while trained to
exhibit substantial fairness within controlled environments,
learning-based solutions in (ii) and (iii) both show degraded
convergence when applied to unseen network environments,
thereby limiting their practical deployment on the open In-
ternet. For example, Astraea adds a fairness metric into its
learning reward to ensure fairness. When trained on links
with bandwidth up to 100Mbps, it demonstrates perfect fair-
ness in its training environment. However, the learned fair-
ness behavior fails to generalize when applied to unseen
environments with larger bandwidth (350 Mbps), as shown
in Figure 1.

In this paper, we ponder a fundamental question: is it pos-
sible to design a DRL-based CC scheme that achieves ecient
fairness across various network environments, independent of
its training domain?We dene the ability of a learning-based
CC scheme to sustain fairness across unseen network envi-
ronments as fairness generalizability, and focus on enhancing
it in this paper.
To answer the question, we investigate the root cause

of poor fairness generalizability observed in previous DRL-
based schemes (§2.2). We identify a fundamental observation:
there is an inherent trade-o between achieving fairness
within a known network environment and extending this
fairness to unexplored environments. To reach a fair equilib-
rium, the policy model requires bandwidth-related signals to
learn dierentiated ow behaviors, enabling large ows to
yield bandwidth to smaller ones. However, these signals also
introduce a divergence in the model input across network
environments with varying bandwidth capacities, leading
to generalizability issues. Previous works generally include
bandwidth/throughput in the model input, therefore ensur-
ing fairness in limited network scenarios at the cost of its
generalizability.

Inspired by the dilemma, we argue that to achieve gener-
alizable fairness, we need to decouple the task of ensuring
fairness from the primary DRL model, therefore remain-
ing unaected by the learning process. We present Jury, a
DRL-based CC scheme that achieves both theoretical and
empirical generalizable fairness across various network en-
vironments. Jury is characterized by two key components.

• Jury designs an RL decision-making process that deliber-
ately omits bandwidth-related signals. For the model input,
we identify a set of observable network signals that are
independent of the current ow bandwidth occupancy. For
the model output, instead of directly generating the send-
ing rate adjustment, it outputs a decision range. Trained
with these invariant signals, ows competing with the
same bottleneck receive uniform signal inputs and output
the same decision range, regardless of their bandwidth
utilization (§3.1).
• Jury further adopts a post-processing phase to dynami-
cally decide sending rate adjustment from the decision
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Figure 1. Astraea cannot generalize its learned fairness in
3-ow case to unseen environments.

range based on the ow’s current bandwidth utilization es-
timation. We utilize sending rate changes and throughput
responses to gauge the ow bandwidth utilization, which
is then used to modulate the output sending rate. The
phase dierentiates the behavior of competing ows, mak-
ing large ows more conservative and smaller ows more
aggressive, thus promoting a fair and balanced allocation
(§3.2).
With robust assurance of fairness generalizability, Jury

extends its ecient fairness from emulated training envi-
ronments to real-world networks, adapting to diverse link
characteristics and varying numbers of competing ows.
Additionally, the sucient network information encoded
in the input signals ensures the learning capabilities of the
DRL model (§3.1), thereby maintaining its consistently high
performance across various network environments.
We have implemented and trained Jury in Linux servers

supported by customized kernel modules (§4). Extensive eval-
uations (§5) show that Jury demonstrates consistently good
fairness properties across i) various network environments
with dierent link characteristics and ii) homogeneous and
heterogeneous competing scenarios, including intra-protocol
fairness, RTT fairness, and fairness between long-short ows
(§5.1). Also, Jury maintains consistently high performance
across various emulated environments and real-world Inter-
net (§5.2) (bandwidth ranging from 5Mbps to 10Gbps, base
one-way delay from 10ms to 400ms, and loss rate from 0 to
1.5%). The source code of Jury is available for the community
at: hps://github.com/tianhan4/jury.

2 Background and Motivation

2.1 DRL-based Congestion Control

Recently, deep reinforcement learning has gained broad inter-
ests in tackling congestion control challenges [1, 18, 24, 41].
DRL-based CC schemes are trained on network environ-
ments where the ow agent interacts with the environment

https://github.com/tianhan4/jury
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to gather training data. The ow agent works in a time-
interval manner: for the 𝑡-th time interval, it observes net-
work signals (e.g., throughput, latency, and loss) from the
environment as its input state 𝑠𝑡 ∈ S and generates action
𝑎𝑡 ∈ A to adjust the sending rate. The link state may change
after the ow’s action, and the ow agent will receive a new
state 𝑠𝑡+1. During the interaction, the agent obtains a reward
𝑟𝑡 from the environment and updates the policy based on 𝑟𝑡
to build the mapping between the input state and the output
action. The DRL agent renes its control policy during the
training process to maximize the discounted cumulative ex-
pected reward J = E(∑𝑇

𝑡=0 𝛾
𝑡𝑟𝑡 ) during the lifetime of the

ow, where 𝛾 is a discounted factor. Based on these data, a
well-learned policy drives states to actions that lead to high
performance.
Why reinforcement learning? DRL shows its superiority
in congestion control with its data-driven learning nature,
where the control policy is learned through real-world data
without human intervention. This ability not only diminishes
the reliance on the manual design of heuristic mappings and
hyperparameter tuning but also enables continuous perfor-
mance improvement through the adaptation to new data and
experiences collected at end hosts [24, 47]. Contrastingly,
traditional heuristic-based solutions are time-intensive and
sophisticated processes that require substantial input and
trial-and-error from experienced network professionals. The
extensive eorts exerted by Google engineers in adapting the
BBR protocol for diverse network environments like cellular
links underscore this point [1].

2.2 Generalizable Fairness Issue

The generalizability of a DRL model denes its capability
to perform well in environments that have never been seen
during training. In the context of congestion control, it rep-
resents the ability to generalize to various network envi-
ronments such as i) links with dierent bandwidths, delays,
and loss rates; ii) congested links with various numbers of
competing ows, and so on.

Several existing works have been focusing on improving
the fairness of learning-based CC schemes. In this section, we
highlight that they all fail to achieve generalizable fairness.
Online exploration schemes: Online exploration schemes
utilize a stateless online learning paradigm to explore the
optimal sending rate through trial and error [7–9, 28]. These
schemes employ an exploration algorithm that dynamically
adjusts the sending rate, observes the network feedback, and
then selects the subsequent action. For instance, solutions
like Allegro [7] and Vivace [8] incrementally increase or
decrease the sending rate in small intervals, and then choose
the direction that yields the best performance according
to a predened utility function. In contrast, Libra [9] com-
pares the policies of a learning-based scheme and a classic
scheme to determine the optimal sending rate. However,

the exploratory process in these schemes generally requires
several round-trip times (RTTs) to complete a single send-
ing rate adjustment. This can lead to slow convergence on
network paths with large RTTs, as shown in Figure 7(f). Fur-
thermore, the slow response time of these online exploration
schemes can hinder their ability to quickly adapt to dynamic
bandwidth changes, as illustrated in Figure 12.
Hybrid control schemes: Another line of research at-
tempts to combine learning-based algorithms with classic
CC protocols, with the goal of leveraging the benets of both
approaches. For example, Orca [1] adopts a hybrid design
that integrates both the Cubic and a DRL model to jointly
control the sending rate. The underlying premise is that the
hybrid scheme can benet from the high performance of
the DRL learning process as well as the good convergence
properties of the Cubic protocol. However, the lack of a
well-designed integration between the learning-based and
classic components may lead to suboptimal performance
in practical network scenarios, especially ones that are un-
seen during the training. The RL part may undermine the
theoretical guarantees of fairness provided by Cubic, while
the Cubic part can inadvertently aect the performance of
the RL model by changing the sending rate according to its
own internal state. As demonstrated in [23] and shown in
Figure 7(h), Orca exhibits both unstable convergence and
poor performance under lossy network conditions.
Fairness-oriented learning schemes: More recently, re-
searchers have started to explore learning-based conges-
tion control schemes that explicitly focus on incorporating
fairness-related objectives into the learning process. The goal
is to teach the control model to behave fairly towards compet-
ing ows directly. For example, Astraea [23] leverages multi-
agent reinforcement learning techniques to incorporate the
interaction between multiple ows as part of the reward
signal during the learning process, incentivizing the agents
to optimize for good convergence properties across compet-
ing ows. While these fairness-oriented learning schemes
have demonstrated superior fairness within their trained op-
erational regions, they often exhibit degraded convergence
and performance when applied to unseen network environ-
ments, thereby limiting their practical deployment on the
open Internet. For example, Astraea, when trained on 100
Mbps network links, has been observed to show poor fairness
characteristics when applied to network conditions with sig-
nicantly higher bandwidth capacity, as shown in Figure 1.
Further online adaptation to new environments can hardly
mitigate the problem, as the decentralized nature of Internet
congestion control necessitates that DRL-based CC schemes
are updated locally without global information of other com-
peting ows, which hinders their ability to learn global fair-
ness behavior in real-world networks. Another possible solu-
tion is to cover network conditions exhaustively during the
training. However, as the real-world Internet exhibits various
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complex behaviors due to various scheduling mechanisms,
trac shaping, and interactions with dierent congestion
control protocols. The data/environment collection and train-
ing costs will become overwhelming. Furthermore, without
explicit theoretical foundations, it is hard to diagnose and
improve the policy generated by neural networks when they
fail to achieve fairness.

To solve the problem, we dived into the learning pipeline
of previous learning-based schemes.We found that their poor
fairness generalizability in unseen network environments
is primarily attributed to the dierence of received network
signals in trained environments and unseen ones. For exam-
ple, when trained over 100 Mbps networks, the maximum
observed throughput 𝑡ℎ𝑟𝑚𝑎𝑥 feature observed by Astraea
may dier substantially for links with higher bandwidth
capacities. As a result, the ow agent’s behavior becomes
unpredictable in these new network conditions, causing the
well-learned fair policy to underperform or even fail.

Existing solutions have focused on normalizing the input
network signals from various environments into a common
feature space, in an attempt to reduce the input state diver-
gence. Following this idea, various normalization techniques
have been used in previous works [1, 18, 24, 41]. For instance,
Aurora [18] uses normalized states including latency gradi-
ent and the ratio of latency to the minimum latency, and
Orca [1] normalizes all throughput-related and delay-related
features with the maximum observed throughput and the
minimum observed one-way delay, respectively.
Following these techniques, we attempted to revise the

original Astraea scheme by removing throughput-related
features1 from its input feature set. However, when we re-
trained the model with this modication, the model could
hardly even learn to converge in training environments. Af-
ter further investigation, we determined that the root cause
was the lack of bandwidth-related input features. Attaining
fairness requires the model to make distinct adjustments in
sending rates among ows with dierent bandwidths. For
example, under the same delay and loss signals, ows occu-
pying larger bandwidth should behave more conservatively
and back o their bandwidth to allow smaller ows to receive
a fair share (this is also the core principle of AIMD). The
analysis in the original Astraea paper [23] also shows that to
achieve fairness, the Astraea ows are learned to respond to
delays dierently based on their current throughputs. The
removal of the bandwidth-related features will impede the
model’s ability to dierentiate the actions needed to reach a
fair equilibrium.
Conclusion: Weobserve an inherent conict between achiev-
ing fairness and ensuring its generalizability across diverse
network environments. This conict stems from the dilemma
of whether to omit the bandwidth-related signals that are

1It includes the 𝑡ℎ𝑟𝑚𝑎𝑥 feature, the observed maximum throughput in the
ow’s history and the throughput ratio 𝑡ℎ𝑟

𝑡ℎ𝑟𝑚𝑎𝑥
.

essential for the model to learn eective fair bandwidth allo-
cation strategies.

2.3 Key Design Decisions

Inspired by the inherent conict between fairness and gener-
alizability, our key design decision is to decouple the task of
ensuring fairness from the primary DRL model. We propose
a novel DRL pipeline where the preservation of fairness prop-
erties is inherently embedded, addressing the limitations of
prior approaches. Dierent from previous DRL-based CC
schemes that blindly pour all available signals into the neu-
ral network model and use it as an end-to-end solution, we
deliberately select input features for the DRL model to grant
its fairness generalizability. Furthermore, we hand-crafted
a preprocessing and postprocessing method for the model
pipeline to ensure its fairness properties. Our design features
two key components:
• We aim to design an RL decision-making process where
ows competing with the same bottleneck receive uniform
signal inputs and generate the same output, regardless of
their bandwidth utilization. To achieve this, Jury deliber-
ately removes bandwidth-related signals from the state
input and instead utilizes a set of observable network sig-
nals that only relate to the bottleneck status. The process
outputs a decision range, rather than a direct sending rate
adjustment. By doing so, ows competing with the same
bottleneck always receive uniform signal inputs and out-
put the same decision range, regardless of their individual
bandwidth utilization. This not only preserves fairness
generalizability, but also constructs a consensus point be-
tween competing ows as the basis for the subsequent
fairness-oriented component (§3.1).
• Jury adopts a post-processing phase to modulate the send-
ing rate changes between competing ows, ensuring fair-
ness. Specically, based on the decision range generated by
the DRLmodel, this phase dynamically adjusts the sending
rate for each ow based on its current bandwidth utiliza-
tion. We rst estimate the ow’s bandwidth utilization
(throughput/link capacity) using its historical sending rate
changes and throughput responses. Then, this bandwidth
utilization estimate is used to modulate the output sending
rate, such that larger ows get lower sending rates and
smaller ows get higher sending rates. In this way, the
phase dierentiates the behavior of competing ows, mak-
ing large ows more conservative and smaller ows more
aggressive, thus promoting a fair and balanced allocation
(§3.2).
As a result, we can attain a balanced and fair distribution

among ows even with normalized input features, achieving
both fairness and its generalizability across network environ-
ments. The pre-processing and post-processing parts enable
the DRL-based model to achieve fairness without relying
on explicit bandwidth utilization features, eectively incor-
porating "classic CC wisdom" into the ML-based solution,
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Figure 2. The DRL pipeline of Jury. Preprocessing feature transformation ensures the generalizability of the pipeline, and the
post-processing function ensures the fairness property.

allowing the DRL model to focus on optimizing the per-
formance goal (e.g., high bandwidth and low delay). Given
sucient informed signals, the pipeline continues to exhibit
strong performance across both training and unseen test-
ing network conditions, as guaranteed by the normalization
technique and shown in the evaluation sections (§5).

3 Design

Based on the observation and design decisions, we design our
fairness-generalizable DRL-based CC algorithm, Jury. Fig. 2
overviews the pipeline of Jury. It consists of three blocks: i)
the signal transformation function; ii) a DRL model, and iii)
a post-processing function. During each time interval, a ow
acquires raw network statistics 𝑠𝑟𝑎𝑤 from the environment,
including throughput, latency, loss, and so on. These raw
signals are fed into Jury’s signal transformation function
to generate normalized observable states, which are then
bifurcated into two separate components.

For the DRL model’s input, we select latency and loss net-
work signals, as they describe the bottleneck congestion level
and are agnostic to ow bandwidth occupancy. This ensures
that the DNNmodels for all competing ows receive identical
input states and yield the same output actions, characterized
by a decision range with mean 𝜇 and radius 𝑟 . Also, all the
signals are normalized to ensure generalizable performance
across various network environments.
On the other path, bandwidth-related states (including

sending rate change and the corresponding throughput change)
are employed to gauge the ow’s bandwidth occupancy ratio.
This ratio informs the post-processing phase in determin-
ing a specic point within the (𝜇, 𝑟 ) range, which is then
converted into an action for multiplicative rate adjustment.
The pipeline works as if plugging in an adaptor into the

DRL model, normalizing the state input and then ’denor-
malizing’ the output to rescale the sending rate adjustment
according to the ow’s bandwidth usage. This allows distinct
rate adjustments for dierent bandwidth ows, leading to a
fair equilibrium point.

We describe the details of each component in the pipeline
of Jury in the following sections, including its signal trans-
formation (§3.1), action generation pipeline (§3.2), reward

Figure 3. The action-feedback signals of a Jury ow.

denition (§3.3), signal processing mechanism (§3.4) and the
RL training algorithm (§3.5).

3.1 Signals Transformation

It is non-trivial to locate normalized signals that encode
sucient information for control decision-making. In this
section, we design Jury’s signal transformation block that
both provides rich network information for the optimal send-
ing rate control and preserve the fairness generalizability of
policies learned with them.

As shown in Fig. 3, Jury’s signals are based on an action-
feedback mechanism that actively detects the current ow
and queue status in the bottleneck. Specically, Jury records
the enforced sending rate adjustments and the corresponding
packet statistics changes. For an action 𝑎𝑡−1 enforced at the
𝑡-th time interval that updates the sending rate from 𝑥𝑡−1
to 𝑥𝑡 , Jury tracks the outbound packets during this interval
and collects the following metrics based on their ACKs:
• The ratio of throughput change to the throughput in the
last time interval 𝑡ℎ𝑟𝑡−𝑡ℎ𝑟𝑡−1

𝑡ℎ𝑟𝑡−1
, where 𝑡ℎ𝑟𝑡 is the average

throughput for packets sent at the 𝑡-th time interval.
• The dierence in RTT of two adjacent time intervals𝑅𝑇𝑇𝑡−
𝑅𝑇𝑇𝑡−1, where 𝑅𝑇𝑇𝑡 is the average RTT for packets sent at
the 𝑡-th time interval.
• The ratio of (1-loss_rate) between the two time intervals

1−𝐿𝑡
1−𝐿𝑡−1 , where 𝐿𝑡 is the average loss rate for packets sent
at the 𝑡-th time interval.
• The multiplicative sending rate change 𝑎𝑡−1 = 𝑥𝑡

𝑥𝑡−1
.

We normalize throughput and loss with their previous
values, only using their multiplicative changes. For the RTT
signal, we use the reductive change, as the change in RTT
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Figure 4. The packet statistics that change with increasing
sending rate depend on the queue status (all statistics are
scaled to [0,1] for visualization.).

inherently represents the ratio between the overall sending
rate and the link capacity:

Δ𝑅𝑇𝑇 = 𝑅𝑇𝑇𝑡 − 𝑅𝑇𝑇𝑡−1 = Δ𝑡 · Σ𝑖𝑥𝑖,𝑡 − 𝑐
𝑐

, (1)

where Σ𝑖𝑥𝑖,𝑡 is the overall sending rate of all ows at 𝑡-th
time interval, Δ𝑡 is the time interval range, and 𝑐 is the link
capacity. Given a constant time interval, ΔRTT represents
the imbalance between the overall sending rate and the avail-
able link capacity. This normalization approach ensures that
the collected metrics are insensitive to the specic network
environment. Models fed with these signals will focus on
learning the relative changes in the throughput, RTT, and
loss rates instead of their absolute values in any specic net-
work environment, allowing the learned policy to generalize
well across dierent network conditions.

Besides their generalizability, the above action-feedback
based signals probe sucient information about the current
network environment to enable intelligent control. Here we
show how a ow can i) learn to optimize its throughput while
reducing latency through signals (𝑅𝑇𝑇𝑡−𝑅𝑇𝑇𝑡−1, 1−𝐿𝑡

1−𝐿𝑡−1 ), and
ii) estimate its bandwidth occupancy in multi-ow scenarios
using ( 𝑥𝑡

𝑥𝑡−1
,
𝑡ℎ𝑟𝑡−𝑡ℎ𝑟𝑡−1

𝑡ℎ𝑟𝑡−1
).

For the latency and loss dierence signals 𝑅𝑇𝑇𝑡 − 𝑅𝑇𝑇𝑡−1
and 1−𝐿𝑡

1−𝐿𝑡−1 , Fig. 4 shows the growths of throughput, latency,
and loss rate with a single ow on a link (100Mbps, 30ms
RTT, 750KB buer size) that keeps increasing its sending
rate. We note that dierent metrics exhibit heterogeneous be-
haviors across dierent stages of queue building: i) when the
link is under-utilized and the queue is empty, the throughput
increases with the sending rate while its RTT and loss rate
remain unchanged; ii) when packets start queuing in the
bottleneck, increasing the sending rate will not aect the
throughput anymore, and RTT starts to increase; iii) after
the queue is full, continuing to increase the sending rate
with not aect the RTT anymore, and packet loss starts to
increase. Therefore, through recognizing dierent respon-
sive behaviors of throughput, RTT and loss rate concerning
sending rate modications, the ow agent senses the current
queue-building phase and is thus able to tune its sending
rate towards the optimal operating point. This optimal point

is the junction of the "empty queue" and "queuing" phases,
where the link is fully utilized with almost no queue.

We then elaborate how sending rate and throughput dif-
ference signals 𝑥𝑡

𝑥𝑡−1
and 𝑡ℎ𝑟𝑡−𝑡ℎ𝑟𝑡−1

𝑡ℎ𝑟𝑡−1
help estimate ow’s bot-

tleneck bandwidth occupancy. Fig. 5 depicts how the ow’s
throughput changes at dierent bandwidth occupations, when
its sending rate is increased by 10% in a 2-ow link (100Mbps,
30ms RTT, 750KB buer size). We observe that when the
ow occupies less share of the link capacity, increasing the
sending rate leads to a larger increase in throughput. Based
on this characteristic, we can estimate the bandwidth oc-
cupation ratio of ows based on the relations between its
sending rate changes and throughput changes through the
following congestion control modeling.
When multiple ows fully occupy the bandwidth of a

bottleneck, for a specic ow, the feedback of throughput
change corresponding to its sending rate change is related
to its existing share of the link bandwidth. For a specic
ow, its share of link bandwidth is related to the ratio of
its sending rate to the overall sending rate of all competing
ows:

𝑡ℎ𝑟𝑖,𝑡 =
𝑥𝑖,𝑡

Σ 𝑗≠𝑖𝑥 𝑗,𝑡 + 𝑥𝑖,𝑡
· 𝑐. (2)

When increasing its sending rate via action 𝑥𝑖,𝑡+1 = 𝑎𝑖,𝑡 · 𝑥𝑖,𝑡 ,
the updated throughput should be

𝑡ℎ𝑟𝑖,𝑡+1 =
𝑎𝑖,𝑡 · 𝑥𝑖,𝑡

Σ 𝑗≠𝑖𝑥 𝑗,𝑡 + 𝑎𝑖,𝑡 · 𝑥𝑖,𝑡
· 𝑐. (3)

Therefore,
𝑡ℎ𝑟𝑖,𝑡+1
𝑡ℎ𝑟𝑖,𝑡

=
𝑎𝑖,𝑡 (Σ 𝑗≠𝑖𝑥 𝑗,𝑡 + 𝑥𝑖,𝑡 )
Σ 𝑗≠𝑖𝑥 𝑗,𝑡 + 𝑎𝑖,𝑡𝑥𝑖,𝑡

=
𝑎𝑖,𝑡

1 + (𝑎𝑖,𝑡 − 1) 𝑥𝑖,𝑡
Σ 𝑗𝑥 𝑗,𝑡

=
𝑎𝑖,𝑡

1 + (𝑎𝑖,𝑡 − 1) 𝑡ℎ𝑟𝑡𝑐

(4)

We can further get the ow bandwidth occupancy ratio
from the sending rate change and its corresponding through-
put change:

𝑟𝑎𝑡𝑖𝑜𝑏𝑤 =
𝑡ℎ𝑟𝑡

𝑐
=

𝑎𝑖,𝑡 − 𝑡ℎ𝑟𝑡+1
𝑡ℎ𝑟𝑡

𝑡ℎ𝑟𝑡+1
𝑡ℎ𝑟𝑡
· (𝑎𝑖,𝑡 − 1)

(5)

Here, 𝑡ℎ𝑟𝑡 denotes the ow throughput at t-th time inter-
val, 𝑐 denotes the link capacity of the bottleneck. This esti-
mation can be directly calculated from our action-feedback
signals2. With these bandwidth occupancy estimates, Jury
can recalibrate the aggressiveness of sending rate modi-
cations among dierent competing ows to achieve a fair
equilibrium point.

3.2 Rate Adjustment Generation

Following the signal transformation process, the two parts
of the transformed signals are bifurcated into the DRL model
and its post-processing function, respectively. The latency
2BBR has also given similar analysis for its fairness property [40].
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Figure 5. For a ow occupying dierent portions of the link
capacity, we observe its throughput change when increasing
its sending rate by 10%.

and loss dierences (𝑅𝑇𝑇𝑡 − 𝑅𝑇𝑇𝑡−1 and 1−𝐿𝑡
1−𝐿𝑡−1 ) are used by

the neural network model. By relying only on RTT and loss
signals, the model ensures that all competing ows at the
bottleneck receive identical input states. This input unifor-
mity leads to consistent outputs from DRL models for all
ows competing at the same bottleneck. We deliberately
exclude the throughput and sending rate dierence signals
from the input so that the model cannot infer the ow’s
throughput or bandwidth occupancy, preventing the learn-
ing policies from violating the fairness guarantee established
by the post-processing phase. The output from the neural
network model comprises a pair of values: the mean 𝜇 and
the radius 𝛿 , which delineate an action range.

Concurrently, the throughput and sending rate dierences
( 𝑥𝑡

𝑥𝑡−1
and 𝑡ℎ𝑟𝑡−𝑡ℎ𝑟𝑡−1

𝑡ℎ𝑟𝑡−1
) are used to estimate the ow band-

width occupancy based on Equation 5, which is then used
in the post-processing phase to determine the precise rate
adjustments for dierent ows within the given action range
(𝜇𝑡 , 𝛿𝑡 ) as following:

𝑎𝑡 = 𝜇𝑡 + (1 − 2 · 𝑟𝑎𝑡𝑖𝑜𝑏𝑤) · 𝛿𝑡 (6)

This approach ensures that ows with a higher bandwidth
occupancy always produce smaller actions, leading to a grad-
ual relinquishment of bandwidth to lesser-occupying ows.
This process continues until a fair equilibrium in bandwidth
sharing is achieved, establishing the convergence guarantee
of Jury. Furthermore, the insensitivity to link characteristics
of Jury’s signals enables the fairness to generalize to ows
with heterogeneous base delays and random loss rates due
to their dierent network paths, as shown in §5.1.2.

Then, similar to previous DRL-based CC schemes [1, 18, 24,
41], Jury adjusts the congestion window and then calculates
a proportional pacing rate based on the output action. It
adopts a multiplicative sending rate adjustment. Specically,
the action 𝑎𝑡 generated by the DRL model in Jury in each
time interval updates the congestion window as follows:

𝑐𝑤𝑛𝑑𝑡+1 =

{
𝑐𝑤𝑛𝑑𝑡 · (1 + 𝛼 · 𝑎𝑡 ) 𝑎𝑡 ≥ 0
𝑐𝑤𝑛𝑑𝑡/(1 − 𝛼 · 𝑎𝑡 ) 𝑎𝑡 < 0

, (7)

where 𝛼 is a hyperparameter that controls the policy ag-
gressiveness. Then, we calculate the pacing rate based on the
updated congestion window and the average RTT observed
in the last interval:

𝑥𝑡+1 =
𝑐𝑤𝑛𝑑𝑡+1
𝑅𝑇𝑇𝑡

. (8)

3.3 Reward

The reward function is pivotal in dening the learning ob-
jective for the ow agent’s control policy. Jury’s reward
function employs local signals to enable further policy adap-
tation. Inspired by Vivace’s utility framework [8], the reward
function for Jury is formulated as follows:

𝑅 = (𝑟𝑎𝑡𝑖𝑜𝑏𝑤)𝜁−𝑟𝑎𝑡𝑖𝑜𝑏𝑤 ·(𝛽1 ·(𝑅𝑇𝑇−𝑅𝑇𝑇𝑚𝑖𝑛)−𝛽2 ·
1 − 𝐿𝑡
1 − 𝐿𝑚𝑖𝑛

),
(9)

where 0 < 𝜁 < 1. The reward denition focuses on increasing
the ow bandwidth occupancy while decreasing incurred
latency and packet loss. The terms 𝑅𝑇𝑇𝑚𝑖𝑛 and 𝐿𝑚𝑖𝑛 denote
the observed minimum RTT and loss rate, respectively. It is
plain that both (𝑅𝑇𝑇 − 𝑅𝑇𝑇𝑚𝑖𝑛) and 1−𝐿𝑡

1−𝐿𝑚𝑖𝑛
can be derived

from the ows’s signal history. The coecients 𝛽1 and 𝛽2
represent the weight of latency and packet loss. We have
tuned the weights (Table 2) for the learned policy to achieve
a good balance among various criteria (throughput, delay,
and loss), as shown in the evaluation section. For a specic
CC objective with new preferences, Jury would need to
be retrained. MOCC [24] provides a multi-objective DRL-
based CC framework that can adapt to dierent preferences
simultaneously without retraining, which can be adopted
in our method to t networking applications with various
requirements.
Echoing the action generation process, the reward struc-

ture is also designed to incentivize smaller ows to increase
their throughput more aggressively than larger ows. The
reason is twofold: rst, the concave throughput term (𝑟𝑎𝑡𝑖𝑜𝑏𝑤)𝜁
ensures higher rewards for small ows when increasing their
throughput compared to larger ows. Second, as the through-
put ratio also inuences the penalty terms, smaller ows
incur lesser penalties due to latency ination and packet loss,
recognizing that they have a limited impact on queue length
and thus bear less responsibility for congestion. According
to Vivace [8], such a concave utility function ensures the con-
vergence of its online learning process to a fair equilibrium.
While Jury’s fairness property is primarily upheld by the
post-processing phase, we nd that the usage of the reward
function in Equation 9 practically stabilizes Jury’s learning
process.
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3.4 Signal/Action Processing

To improve the robustness of Jury, we incorporate several
preprocessing/post-processing techniques on top of the DRL
scheme to keep empirical signals and responses aligned with
our generalization component.
Signal Averaging and Filtering As illustrated in Figure 5,
even with consistent sending rate alterations, network signal
changes vary due to network jitters. To mitigate the issue,
Jury employs a moving average lter to smooth the estima-
tion. Furthermore, we establish upper and lower bounds for
these signals to lter outliers. Samples that fall outside these
boundaries are adjusted to the corresponding threshold val-
ues. We also observe that the noise will not severely aect
the DRL-CC pipeline performance. The reason may be due
to the incremental process of the sending rate adjustment in
congestion control, where the output sending rate changes
modulated by the noisy estimation will also be averaged over
time.
Exploration Action We adopt specic rules for output
actions to meet innate exploration requirements from action-
feedback signals.We encourage the agent to increase/decrease
the sending rate to probe the current network condition.
Specically, if the output action 𝑎𝑡 is near 0 (𝑒𝑙𝑜𝑤𝑒𝑟 < 𝑎𝑡 <

𝑒𝑢𝑝𝑝𝑒𝑟 ), we assign a high likelihood to modify the action to
either 1 or -1 (with the same probability, so the expectation
remains unchanged). This adjustment compels the ow to
either maximally boost or reduce the sending rate so it can
investigate more obvious responses tied to deliberate uc-
tuations in sending rates, enabling more informed policy
decision-making for the RL model.
Enhance Statistics Signicance To collect consistent and
robust statistical signals, Jury just keeps maximally increas-
ing the sending rate when packets inside one interval are less
than the pre-dened threshold, ensuring sucient samples
to generate statistically signicant signals and thus, inform
a reliable decision-making process. Additionally, this mech-
anism can also i) work as a slow-start phase and ii) allow
short ows to circumvent the DRL inference overhead.

3.5 Training

For the training algorithm, Jury adopts Deep Deterministic
Policy Gradient (DDPG), a prevalent model-free, o-policy
DRL algorithm used in previous DRL-based CC schemes [1,
24, 41]. Jury utilizes the actor-critic framework to train the
agent’s policy, which involves both a critic model that es-
timates the expected cumulative rewards (the action-value
function 𝑄𝜋𝜃 (𝑠, 𝑎) = E[∑𝑇

𝑡=0 𝛾
𝑡𝑟𝑡 | 𝑎, 𝑠]) and an actor model

that decides the actions.
During training, the actor interacts with the network envi-

ronment, gathering trajectories composed of tuples (𝑠𝑡 , 𝑎, 𝑟, 𝑠𝑡+1).
After each run of trace, we perform an update operation. For

Bandwidth Base RTT Buer size Loss rate
20-100 Mbps 10-60ms 0.8-1.5 BDP 0-0.1%
Table 1. DRL-based methods training environment.

every update step, we sample tuples from the collected train-
ing data in batches and update the actor and critic models.
Jury updates the actor’s policy 𝜋𝜃 by minimizing the follow-
ing objective function:

J (𝜃 ) = E [𝑄𝜔 (𝑠, 𝜋𝜃 (𝑠))] , (10)
where 𝑄𝜔 (𝑠, 𝑎) is the output of the critic that estimates

the action-value function 𝑄𝜋𝜃 (𝑠, 𝑎) under the current policy.
This estimation guides the actor in selecting actions that lead
to higher rewards. On the other hand, the critic is trained
to improve its value estimation by estimating the dierence
between subsequent states. It minimizes the following ob-
jective function:

L (𝜔) = E𝑠,𝑎,𝑟,𝑠′
[(
𝑄𝜔 (𝑠, 𝑎) − 𝑟 + 𝛾𝑄𝜔 (𝑠 ′, 𝑎′) |𝑎′=𝝅𝜽 (𝑠′)

)2]
.

(11)
After calculating the gradients, Jury updates the actor and

critic models with learning rates 𝜎 and 𝜂, respectively:

𝜃 ← 𝜃 + 𝜎∇𝜃J (𝜃 ) , 𝜔 ← 𝜔 − 𝜂∇𝜔L (𝜔) . (12)
Similar to previous methods, we stack signals from a win-

dow of intervals as the input state of the model to enrich the
input information. We also adopt several RL-related training
techniques used in Twin Delayed Deep Deterministic Policy
Gradient (TD3) [14], including clipped double Q-learning,
delayed policy updates, and target policy smoothing regu-
larization. These techniques help reduce the variance of the
critic model’s value estimation.

4 Implementation

We implement a fully functional Jury prototype in Linux. It
consists of the CC kernel module in the Linux TCP network
stack and the RL agent in the userspace. The kernel CC mod-
ule collects the network signals and sends them to the RL
agent in the userspace, which then returns the control action
to the kernel. The kernel module uses the action to change
the congestionwindow and pacing rate. The cross-space com-
munication channel is implemented with netlink [37]. For
the DRLmodel design and training, we use the RL framework
DI-engine [11] based on PyTorch [34] that provides support
for various deep reinforcement learning algorithms as well
as the capability to design custom policies. For the inference
part, we implement the inference service entirely in C++ us-
ing the high-performance PyTorch C++API. This approach is
more lightweight than previous learning-based implementa-
tions, such as Orca [1], and avoids the need for cross-process
communication between a C++ client and a Python-based
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Name Value
control time interval 30 ms
actor learning rate (𝜎) 5e-4
critic learning rate (𝜂) 1e-3
discount factor (𝛾 ) 0.98
batch size 64
model update interval (second) 5
action control coecient (𝛼) 0.025
RTT scale coecient (𝛽1) 1e-5
loss scale coecient (𝛽2) 5

Table 2. Training hyperparameters in Jury.

inference service. For the neural network models, we adopt
a model structure with two 128-dimensional fully connected
layers. We train Jury on emulated network environments
implemented with Mahimahi [32] and Pantheon-tunnel [45]
supporting customized link capacity, base delay, and random
loss.
We use a distributed training setup with 8 parallel pro-

cesses (actors) to collect the training experience, and a single
process (critic) to update the model with the collected data
every 5 seconds. This allows us to eciently gather diverse
training data while keeping the model update process cen-
tralized.
We train and evaluate Jury on a Linux server with 80

CPU cores, 256 GB of RAM, and an NVIDIA GeForce RTX
3090 GPU. We leverage the GPU for neural network model
updates during the training phase, but use only the CPU for
inference, making the policy deployment more feasible on
common end-host devices. The training process converges
within 4 hours. We have carefully chosen and tuned all the
training hyperparameters to stabilize the learning process
of Jury, and we list their values in Table 2.

5 Evaluation

In this section, we evaluate Jury with emulations and real
testbed experiments to validate its fairness generalizability
and consistent high performance across various network
conditions. We demonstrate Jury’s convergence generaliz-
ability in §5.1 and performance in §5.2. We compare Jury
with several baselines, including recently proposed learning-
based CC schemes (Astraea [23], Orca [1], Aurora [18], Vi-
vace [8]) and classical heuristics-based CC schemes (Cu-
bic [15], BBR [4], Vegas [3]).

To avoid the inuence of the range of the training environ-
ment, we retrain all learning-based schemes with the same
training environment region as shown in Table 1. Through-
out the training phase of these DRL-based schemes, we also
simulate a varying number of homogeneous and Cubic con-
current ows (ranging from 2 to 10) into the environment to
facilitate the learning of robust convergence properties.
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Figure 6.The average Jain Index of homogeneous competing
ows with 5th and 95th percentiles.

5.1 Generalizable Fairness

In this section, we evaluate Jury’s fairness generalizability
in terms of intra-protocol fairness, RTT-fairness, fairness
under multi-bottleneck scenario, and friendliness.

5.1.1 Fairness among Jury Flows. To evaluate the gen-
eralizability of Jury’s fairness in dierent conditions, we
set up experiments with three homogeneous ows, each
running for 180 seconds and starting 60 seconds apart. We
conduct 60 repetitions of this experiment on emulated links,
representing a range of network conditions with bandwidths
from 20Mbps to 400Mbps, base one-way delays from 10ms
to 75ms, and loss rates up to 0.3%. The Jain’s Fairness Index,
along with the 5th and 95th percentiles, is presented in Fig. 6.
The optimal Jain’s index is 1, which indicates perfect fair-
ness where all ows have equal bandwidth immediately and
stay constant. We observe that Jury achieves the highest
average Jain Index (0.94) among the baselines with also the
highest 5th percentile (0.82). This performance underscores
Jury’s robust fairness across diverse network environments,
conrming that our design achieves generalizable fairness
across various network environments.
Fig. 7 further demonstrates the throughput dynamics of

competing ows under various network conditions. As ob-
served in Fig. 7(a), 7(b), 7(c), and 7(d), Jury displays consistent
fairness behaviors across dierent link capacities, delays, and
loss rates. Its convergence speed is a little slower in large
BDP links due to limited rate adjustments per interval and
delayed feedback in high RTT scenarios. In contrast, existing
learning-based schemes show poor fairness in specic condi-
tions. Astraea, for instance, struggles with fairness outside its
training region (Fig. 7(e)), as it lacks of a guaranteed fairness
learning process. Vivace and BBR exhibit slow convergence
in scenarios with large RTTs and packet loss (Fig. 7(f), 7(g)),
as it requires several RTTs to adapt to network changes.
Orca, despite demonstrating good fairness in various con-
ditions (average Jain Index=0.91), faces challenges on lossy
links where its underlying Cubic scheme also underperforms,
leading to both reduced link utilization and poor fairness
(Fig. 7(h)). The main reason for Orca’s limitation is due to its
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unscrutinized interleaving of the DRL control and the classic
Cubic control. Specically, the RL part may undermine the
theoretical guarantees of fairness provided by Cubic, while
the Cubic part can aect the performance of the RL model
by changing the sending rate according to its own internal
state.

5.1.2 RTT-Fairness. A notable aspect of Jury is its RTT-
fairness, characterized by the independence of its conver-
gence property from the actual RTTs of competing ows. To
empirically investigate this, we establish a 100Mbps link and
sequentially introduce ve Jury ows with progressively in-
creasing base RTTs (70ms, 110ms, 150ms, 190ms, and 210ms).
Each ow is launched at 60-second intervals and ran for 300
seconds. The throughput and RTT dynamics of these ows
are depicted in Fig. 8. Our observations reveal that Jury ows,
despite having varied RTTs, almost equally share the band-
width, demonstrating negligible latency ination. The reason
is that Jury’s bandwidth occupancy ratio estimation based
on action-feedback signals is independent of network RTT.
Consequently, Jury exhibits a convergence behavior that is
adaptable to heterogeneous RTT scenarios. This adaptability
ensures equal bandwidth sharing among ows originating
from dierent network paths, further underscoring the ro-
bustness of Jury in diverse network conditions.

5.1.3 Large number of ows. In this section, we explore
the scalability of Jury’s fairness across large numbers of
ows with varying running times and RTTs. We consider
two common scenarios in the Internet: (i) ows with diverse
running times, and (ii) ows with heterogeneous RTTs. For
(i), we initialize a xed number (4) of long-running ows
that persist throughout the trial, along with a large number
of short ows that arrive and depart frequently. The short
ows follow an exponential distribution with 𝜆 = 4, and
their running times are drawn from a Gaussian distribution
N(4, 12). For (ii), we set up 20 competing ows, where half
have a base RTT of 30ms and the other half have a base RTT
of 90ms. We run each trace for 100 seconds and repeat the
experiment 20 times. The average throughput and latency
for both types of ows, as well as the overall throughput,
are reported in Table 3. We nd that Jury achieves similar
throughput for heterogeneous ows in terms of RTT and run-
ning time, demonstrating its scalability and robust fairness
across ows with diverse characteristics.

5.1.4 Friendliness. In this section, we further investigate
the TCP friendliness of Jury, showing how Jury competes
with ows with dierent CC policy (Cubic) and ow sizes.
We set up a 100Mbps link with 30ms RTT and a buer size
of one BDP. In this experiment, a Jury ow and a Cubic ow
are run concurrently for 120 seconds, and their throughput
ratio is recorded. This test is repeated under various RTTs,
with the results illustrated in Fig. 9. A ratio of 1 indicates
ideal friendliness. Our observations show that while Jury

attains higher throughput ratios compared to other learning-
based schemes such as Aurora, Astraea, Orca, and Vivace,
it remains more conservative than Cubic. Despite the good
results, we note that Jury can only guarantee the conver-
gence property across homogeneous ows with same CC
algorithm, and there is no guarantee that the learned friend-
liness can be generalized to other network conditions. In
fact, whether we need the generalizability of friendliness is
an open question, as Cubic’s link utilization explicitly de-
grades in lossy link. In this case, Jury will also deliver poor
performance if we strictly follow the friendliness principle.

5.2 Consistent Performance

We further show Jury’s performance generalizability by
demonstrating its consistent high performance across a wide
range of network environments through emulated experi-
ments and real-world evaluations. We focus on improving
the performance metrics (throughput, delay, and loss) of indi-
vidual ows. While fairness is embedded in Jury through its
pre- and post-processing pipelines, this design choice may
limit the performance in certain scenarios where fairness
considerations could aect the performance. For instance,
larger owsmay benet from higher sending rates to achieve
good performance, as seen in co-ow scheduling [5].

5.2.1 Extensive Emulations. To evaluate Jury’s perfor-
mance across various network environments, we set up a
dumbbell topology with a single ow and varied link charac-
teristics including link capacity, base delay, random loss rate,
and queue buer size. Subsequently, we individually alter
each link characteristic, keeping others constant, to evaluate
Jury and baseline systems. The parameters range from 10 to
600Mbps for bandwidth, 15 to 120ms for base delay, 0% to
1.5% for loss rate, and 0.2× to 16× BDP for buer size.

The average results from 10 tests are displayed in Fig. 10
and the variances are within ±5%. For clarity, we exclude i)
the latency results of Cubic in Fig. 10(f) and Fig. 10(h) as they
are too large (>200ms) compared to other schemes, and ii)
the link utilization results of Vegas in Fig. 10(a) as it is much
lower when the link capacity is large (<0.3). We observe that,
Jury, trained in a small region, consistently exhibits high link
utilization and low latency ination across all scenarios. We
attribute Jury’s consistent high performance to the invari-
ance of input signals ensured by the signal transformation
block, enabling performance transfer to unseen network con-
ditions. In links with higher delays in Fig. 10(f), Jury exhibits
small latency ination (from 3.5ms to 7.2ms when increasing
the one-way base delay from 15ms to 120ms), due to delayed
network feedback.
Contrastingly, DRL-based schemes like Aurora, Astraea

and Orca, trained on a small training region demonstrate
performance degradation when tested network environment
congurations deviate from their training regions. For ex-
ample, Aurora and Orca suer from link under-utilization
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(b) 350Mbps, 30ms RTT, 0% loss.
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(c) 350Mbps, 150ms RTT, 0% loss.
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(d) 350Mbps, 150ms RTT, 0.2% loss.
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(e) 350Mbps, 30ms RTT, 0% loss.
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(f) 350Mbps, 150ms RTT, 0% loss.
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(g) 350Mbps, 150ms RTT, 0.2% loss.
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Figure 7. Jury generalizes its fairness to network environments with dierent bandwidths, RTTs, and loss rates
(Fig. 7(a),7(b),7(c),7(d)). On the contrary, previous learning-based or heuristic-based schemes fail to converge or converge
slowly in some specic network conditions (Fig. 7(e),7(f),7(g),7(h)).
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Figure 8. The throughput and RTT dynamics of multiple Jury ows with
dierent RTTs.

Flows Jury
Thr. (Mbps) Delay ratio

Overall 192.3 1.64
Per Long ow 11.4 1.72
Per Short ow 10.9 1.88

Overall 191.7 /
Per small-RTT ow 10.3 1.72
Per large-RTT ow 11.1 1.27

Table 3. Long-short and heterogeneous RTT
experiments.
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Figure 9. The throughput ratios of CC schemes to Cubic
under varying RTTs.

when the link capacity is larger than 300Mbps (Fig. 10(a).
Astraea shows severe latency ination when the link band-
width is large (Fig. 10(e)) and under-utilization when the
link is lossy (Fig. 10(c)). Besides, Aurora shows proportional
latency ination with the increase of delay and loss rate,
and Orca’s link utilization dramatically drops (<20%) when
the base delay of the evaluated scenario exceeds its training
range (Fig. 10(f) and Fig. 10(g)). Their poor generalizability

stems from input state and transition divergences under dif-
ferent network conditions. Additionally, Orca’s reliance on
Cubic leads to under-utilization when the random loss rate
is large (Fig. 10(c)), as Cubic cannot dierentiate between
congestion and non-congestion loss.

5.2.2 Jury on Challenging Conditions. We extend our
evaluation of Jury to more challenging network conditions:
i) satellite links with large RTT; ii) high-speed links; and iii)
LTE networks with rapidly uctuating bandwidth.
In satellite communication, long RTT and random loss

signicantly impact classical CC schemes. We test Jury on a
simulated satellite link, following the setup from [8] with 42
Mbps bandwidth, 800ms RTT, and a 0.74% random loss rate.
The results, averaged from 10 trials and shown in Fig. 11(a),
reveal that Jury achieves over 75% link capacity and less than
5% latency ination of the base one-way delay (18.2ms/400ms).
This performance is attributed to its resilience to both high
base delay and random loss. In contrast, Aurora, Astraea and
Orca experience signicant latency ination or link under-
utilization, aligning with the results in §5.2.1. Vivace incurs
high latency ination in satellite links. The reason is that
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Figure 10. The performance of Jury and baselines in terms of link utilization and queuing delay under various bandwidths,
base delays, loss rates, and bottleneck buer sizes.
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Figure 11. Jury in various network conditions.
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Figure 12. The responsiveness in LTE networks.

before achieving the stable equilibrium operating point, Vi-
vace’s RTT-based control frequency incurs large latency and
packet loss during its slow convergence progress when the
RTT is much higher. For high-speed networks, we set up
a 10 Gbps connection with 15ms latency in our testbed to
mimic real-world WAN conditions. Fig. 11(b) displays the
throughput and latency for Jury and benchmarks. We ob-
serve that Jury demonstrates link utilization comparable to
BBR, but with lower latency, showcasing its strong adaptabil-
ity to high-speed networks which are far beyond its training
bandwidths.
Similar with [23], We also assess Jury’s responsiveness

in an LTE network environment [44] by emulating realistic
cellular network traces with uctuating bandwidth. Fig. 12
shows that Jury, with a 15ms base one-way delay and ade-
quate buering, responds excellently to the dynamic band-
width changes, outperforming previous learning-based mod-
els. On the other hand, Aurora, while managing acceptable

link utilization under lower bandwidth scenarios (Fig. 10(a)),
struggled in the LTE link where bandwidth fell outside its
training scope (approximately 5 Mbps). Additionally, Vivace
could hardly react to the dynamic changing bandwidth due
to its slow convergence speed. Jury’s good responsiveness is
due to the eective balance between exploration and exploita-
tion in its interval-based rate adjustment, learned adaptively
through DRL.

5.2.3 Real-world Experiments. We conduct real-world
experiments to assess Jury’s performance on the wild Inter-
net, using the AWS platform with c5a.4xlarge instances in
Seoul, Tokyo, and London. The sender is located in Seoul,
while the receivers are alternated between Tokyo and Lon-
don, allowing us to evaluate Jury in both intra- and inter-
continental environments. We run each CC algorithm for
60 seconds in each test, and repeat the test 10 times. The
average results are displayed in Fig. 13.
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Figure 13. Throughput and one-way delay in real-world
testbed.

Our observations indicate that Jury achieves high link
utilization and maintains low latency ination across both
intra-continental and inter-continental links, forming a new
Pareto frontier among the baselines. Notably, Jury delivers
higher throughput and lower latency than Cubic in both sce-
narios. The fact that Jury excels in real-world Internet con-
ditions, despite being trained on a small region of network
environments, underscores its theoretical generalizability.
In contrast, as previously discussed in §2, Aurora exhibits
higher latency ination, and Orca struggles with large BDP
links in the inter-continental experiments, highlighting their
generalizability issues. BBR achieves higher throughput at
the cost of latency ination due to i) its aggressiveness policy
and ii) explicit modeling policers on the Internet, which is
out of the scope of this paper.

5.3 Overhead

CPU utilization. We evaluate the computational overhead
of Jury and other CC baselines by measuring their CPU
utilization during a ow’s transmission. Specically, we em-
ulate a link with 100 Mbps bandwidth, 30 ms RTT, and a
buer size of 1 bandwidth-delay product (BDP). We cong-
ure Jury to infer the new sending rate every 20 ms, aligning
with the update frequency of the previous DRL-based al-
gorithm Orca [1]. For each CC algorithm, we run the ow
transmission for 120 seconds and record the CPU utiliza-
tion of the transmission process. During the transmission,
Jury takes an average of 4.5 ms for each model invocation.
This low latency for the inference process is crucial for the
real-time performance of the congestion control algorithm.
Choosing a time interval smaller than it may lead to system
failure.

The CPU utilization results are then averaged and shown
in Figure 14. The results indicate that Jury achieves lower
computation overhead than Orca due to its ecient C++
implementation. We further observe there is almost no dif-
ference between the overhead results for Jury with or with-
out the post-processing function, as the computation cost
of the post-processing is much lower compared to the DRL
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Figure 14. Average CPU utilization of Jury and CC base-
lines.

component. To further reduce the computation overhead of
DRL-based CC algorithms, we can either reduce the infer-
ence frequency [41] or implement the neural network model
in the kernel mode [47], which is out of the scope of this
paper.

6 Related Work

Congestion Control The congestion control task has been
a persistent hotspot in networking research for more than
three decades. The traditional schemes [2, 3, 13, 15, 17] are
frequently referred to as heuristic-based schemes since they
are typically handcrafted based on specic assumptions of
the network condition. For instance, loss-based protocols [15,
17] adopt packet loss as the congestion signal and respond
to it by reducing the congestion window.
Recently, a plethora of learning-based schemes has been

proposed to learn control policy based on data instead of
using predetermined rules [1, 7, 8, 18, 24, 36, 41, 43, 45]. For
example, PCC Allegro [7], Vivace [8], and Libra [9] utilize
a stateless online learning paradigm to explore the best ac-
tion through trial and error. Aurora [18] proposes to adopt
vanilla deep reinforcement learning on congestion control
to adjust the 𝑐𝑤𝑛𝑑 , which raises several challenges such as
fairness and overhead issues. Orca [1] proposes to resolve
these challenges by combining classic CC schemes (e.g., Cu-
bic) with DRL-based model. Astraea [23] introduces a global
fairness metric into its multi-agent reinforcement learning
framework to improve convergence properties.We have thor-
oughly compared Jury with these prior schemes in terms of
fairness generalizability in both the motivation and evalua-
tion sections. We refer readers to [19] for a comprehensive
survey of learning-based CC schemes.
RLGeneralization Having achieved superior performance
on benchmarks such as Atari [31] and MuJoCo [42] that con-
sist of a single environment for both training and evaluation,
the RL community has started to focus on understanding,
measuring, and improving generalizability in DRL [6, 20, 25,
33, 35, 39]. Among them are works proposing new architec-
tures or training paradigms to improve DRL generalizability.
For example, [35] adopts an automatic data augmentation
technique to improve the sample complexity and RL general-
izability. [39] introduces training environment diversity by
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inviting multiple agents into the environment so that the RL
agent can learn a policy with better generality. [21] gives a
detailed survey of RL generalization problems and solutions.
However, there is no general generalizability guarantee

of an RL model [20], as the dierence between the training
and test environments is task-related. Hence, to improve
the generalizability of a DRL-based CC scheme, a domain-
specic analysis is demanded, which is the focus of our work.

7 Conclusion

In this paper, we presented Jury, a DRL-based CC algorithm
that achieves fairness generalizability across various network
environments while maintaining high performance. Jury
establishes robust fairness generalizability theoretically and
practically. Extensive evaluations demonstrate consistent
fairness and performance in both emulated and real-world
Internet settings. The convergence analysis and innovative
decoupling technique presented in this paper, we believe, will
shed light on the design of future learning-based algorithms
in various networking and system applications that demand
specic properties.
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