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Abstract
Training large language models (LLMs) generates diverse coflows
within a cluster, requiring optimized scheduling to enhance
communication-computation overlap and minimize training time.
Existing schedulers inadequately handle contention both across
and within coflows, resulting in suboptimal performance.

We present Hermod, a comprehensive coflow scheduler that
orchestrates all coflow types for LLM training. The key insight be-
hind Hermod is that coflows can be uniquely characterized by three
model factors—microbatch ID, coflow type, and layer ID—enabling
optimal scheduling decisions. Leveraging this insight, Hermod ap-
plies model-factor–driven inter-coflow priority scheduling aligned
with the LLM training DAG. Preliminary simulation results show
potential for performance improvements.
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1 Introduction
Large language models (LLMs) have achieved impressive results
across tasks such as machine translation, code generation, and dia-
logue systems [3, 5, 13]. However, training these models remains
resource-intensive due to their massive scale and complexity. To
meet computational and memory demands, LLM training is dis-
tributed across thousands of accelerators, requiring coordinated
parallelization strategies for efficient scalability [6, 9, 15].

Training LLMs involves multiple forms of parallelism, includ-
ing data, tensor, sequence, expert, and pipeline parallelism. Each
introduces distinct communication patterns—e.g., AllReduce and
AllGather for data and tensor parallelism (DP/TP) [8, 14, 16, 17, 19,
20], AlltoAll for expert parallelism (EP) [10, 11], and send/recv
for pipeline parallelism (PP) [7, 12]—modeled as coflows within the
network [4]. Optimizing these coflows is essential for minimizing
job completion time (JCT) and ensuring efficient communication-
computation overlap.

Coflow schedulers aim to improve JCT by reordering commu-
nications based on training data dependencies. Approaches such
as ByteScheduler [14] and Lina [10] have shown promise by op-
timizing specific coflow types: ByteScheduler improves data par-
allelism via layer-wise DP coflows overlap, while Lina prioritizes
EP coflows over DP coflows in backward passes. These techniques,
though effective within their scope, address only subsets of the
communication landscape in LLM training.

Despite their benefits, existing schedulers [10, 14] are limited
by their local, endhost-focused scope and fail to holistically co-
ordinate coflows across the entire cluster. They also overlook PP,
whose coflows introduce strict sequential dependencies that, if un-
accounted for, hinder overall throughput. Furthermore, current
schedulers neglect flow-level imbalances within coflows, leading to
internal bottlenecks.

This work addresses this challenge by introducing Hermod, a
comprehensive coflow scheduler for LLM training. Through an in-
depth analysis of the training DAG, we identify three model-specific
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Figure 1: Computation and coflows in LLM training.
Case I Case II Case III

Priority factor MicrobatchID Coflow type LayerID
(Lower is better) (EP & PP > DP) (Lower is better)

Table 1: Priority factors used to assign priority for three cases.
factors—microbatch ID, coflow type, and layer ID—that directly
inform scheduling priorities. Hermod leverages these factors to
enforce inter-coflow prioritization aligned with the DAG, enabling
comprehensive cluster-wide coordination across all communication
patterns. The remainder of this paper presents the design of Hermod
(§2) and evaluates its effectiveness (§3).

2 Hermod Design
2.1 LLM Training DAG with Coflows
We revisit the LLM training DAG from a coflow scheduling per-
spective, focusing on optimizing coflow overlaps across inter-host
parallelisms—EP, PP, and DP—to minimize job completion time
(JCT). Our goal is to derive a cluster-wide scheduling policy that
aligns network resource allocation with training dependencies.

In typical LLM training, the DAG is fixed by the topology, par-
allelization strategy, and worker placement. This DAG dictates
coflow dependencies across iterations. Figure 1 illustrates a con-
ventional DAG for training an MoE model with ZeRO-2 and 1F1B
optimizations. Each iteration consists of forward propagation (FP)
and backward propagation (BP). Within each iteration, EP coflows
occur twice per MoE layer group for token dispatch and gathering,
followed by PP coflows to transmit intermediate results between
layers [18]. These operations repeat across layers and microbatches.
During BP of the current iteration and FP of the next, DP coflows
perform ReduceScatter and AllGather for gradient synchroniza-
tion and parameter updates [9, 14, 16, 24].

A systematic analysis of the DAG identifies three key cases of
coflow overlap, marked by red rectangles in Figure 1: (I) EP–PP
overlaps across microbatches, (II) EP, PP, and DP overlaps during
BP, and (III) cross-iteration overlaps between FP EP/PP coflows and
BP DP coflows. These overlaps underscore the need for fine-grained
coflow prioritization to mitigate resource contention and inefficient
communication ordering.

2.2 Model Factor-Driven Priority Assignment
From the above cases, we identify three critical model factors—microbatch
ID (MID), coflow type (CType), and layer ID (LID)—that uniquely
characterize and prioritize coflows. These factors are application-
defined, static throughout training, and easily encoded for transport-
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Figure 2: Simulation results when training Qwen-MoE.

layer scheduling. We propose a model factor–driven scheduling
strategy that assigns priorities to minimize critical-path blockage
and maximize communication–computation overlap.

As summarized in Table 1, coflows with smaller MIDs receive the
highest priority, followed by CType (EP/PP over DP) and then LID
(lower layers prioritized). This ordering favors earlier microbatches
and time-critical coflows, ensuring efficient training progression.
The strict priority hierarchy is enforced cluster-wide across all itera-
tions. We also analyze all potential conflicts to maintain consistency
, resulting in a deterministic, conflict-free priority scheme across
the cluster.

3 Evaluation And Future Work

Simulation Setup. We build our simulator on FlexFlow [1] and
htsim [2], following themethodology of [21].We extend FlexFlow to
generate DAGs representing both computation and communication
for all coflow types. Simulations use Qwen1.5-MoE [23] as the
default model, comparing Hermod with Megatron and Lina [10].
Unless otherwise noted, we simulate a cluster of 8-GPU servers
connected via a full-bisection fat-tree with 100Gbps links and 1µs
propagation delay.
Scalability. We evaluate scalability by increasing cluster size from
1,024 to 8,192 GPUs. As shown in Figure 2a, Megatron suffers from
poor throughput due to uncoordinated coflow handling. Lina im-
proves on this with endhost prioritization but overlooks PP coflows.
Hermod achieves up to 1.3× higher throughput by performing
cluster-wide coflow scheduling.
Network Bandwidth. We assess performance under varying band-
widths (40–400Gbps), shown in Figure 2. Hermod consistently out-
performs baselines. At 40Gbps, Hermod yields up to 1.78× speedup
over Megatron via coordinated prioritization. At 400Gbps, network
bottlenecks diminish, but Hermod still provides up to 2× higher
throughput by mitigating EP/PP blocking and enabling DP overlap.
Future Work. We plan to extend Hermod to better resolve intra-
coflow contention (e.g., imbalanced EP coflows) and validate its
effectiveness in real-world LLM training under larger clusters [22].
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