
Coflow Scheduling for LLM Training
Xinchen Wan

Hong Kong University of Science and
Technology

Hong Kong, China
xinchen.wan@connect.ust.hk

Xinyu Yang
Hong Kong University of Science and

Technology
Hong Kong, China

xinyu.yang@connect.ust.hk

Kaiqiang Xu
Hong Kong University of Science and

Technology
Hong Kong, China
kxuar@cse.ust.hk

Xudong Liao
Hong Kong University of Science and

Technology
Hong Kong, China

xliaoaf@connect.ust.hk

Yilun Jin
Hong Kong University of Science and

Technology
Hong Kong, China

yilun.jin@connect.ust.hk

Yijun Sun
Hong Kong University of Science and

Technology
Hong Kong, China

ysuneb@connect.ust.hk

Zhenghang Ren
Hong Kong University of Science and

Technology
Hong Kong, China
zrenak@cse.ust.hk

Han Tian
University of Science and Technology

of China
Hefei, China

henrytian@ustc.edu.cn

Kai Chen
Hong Kong University of Science and

Technology
Hong Kong, China
kaichen@cse.ust.hk

Abstract
Training large language models (LLMs) generates diverse coflows
within a cluster, requiring optimized scheduling to enhance
communication-computation overlap and minimize training time.
Existing schedulers inadequately handle contention both across
and within coflows, resulting in suboptimal performance.

We present Hermod, a comprehensive coflow scheduler that
orchestrates all coflow types for LLM training. The key insight be-
hind Hermod is that coflows can be uniquely characterized by three
model factors—microbatch ID, coflow type, and layer ID—enabling
optimal scheduling decisions. Leveraging this insight, Hermod ap-
plies model-factor–driven inter-coflow priority scheduling aligned
with the LLM training DAG. Preliminary simulation results show
potential for performance improvements.

CCS Concepts
• Networks→ Cloud computing; Data center networks.

Keywords
Coflow scheduling, Large language model
ACM Reference Format:
Xinchen Wan, Xinyu Yang, Kaiqiang Xu, Xudong Liao, Yilun Jin, Yijun
Sun, Zhenghang Ren, Han Tian, and Kai Chen. 2025. Coflow Scheduling
for LLM Training. In ACM SIGCOMM 2025 Conference (SIGCOMM ’25),
September 8–11, 2025, Coimbra, Portugal. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3718958.3750467

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1524-2/2025/09. . . $15.00
https://doi.org/10.1145/3718958.3750467

1 Introduction
Large language models (LLMs) have achieved impressive results
across tasks such as machine translation, code generation, and dia-
logue systems [3, 5, 13]. However, training these models remains
resource-intensive due to their massive scale and complexity. To
meet computational and memory demands, LLM training is dis-
tributed across thousands of accelerators, requiring coordinated
parallelization strategies for efficient scalability [6, 9, 15].

Training LLMs involves multiple forms of parallelism, includ-
ing data, tensor, sequence, expert, and pipeline parallelism. Each
introduces distinct communication patterns—e.g., AllReduce and
AllGather for data and tensor parallelism (DP/TP) [8, 14, 16, 17, 19,
20], AlltoAll for expert parallelism (EP) [10, 11], and send/recv
for pipeline parallelism (PP) [7, 12]—modeled as coflows within the
network [4]. Optimizing these coflows is essential for minimizing
job completion time (JCT) and ensuring efficient communication-
computation overlap.

Coflow schedulers aim to improve JCT by reordering commu-
nications based on training data dependencies. Approaches such
as ByteScheduler [14] and Lina [10] have shown promise by op-
timizing specific coflow types: ByteScheduler improves data par-
allelism via layer-wise DP coflows overlap, while Lina prioritizes
EP coflows over DP coflows in backward passes. These techniques,
though effective within their scope, address only subsets of the
communication landscape in LLM training.

Despite their benefits, existing schedulers [10, 14] are limited
by their local, endhost-focused scope and fail to holistically co-
ordinate coflows across the entire cluster. They also overlook PP,
whose coflows introduce strict sequential dependencies that, if un-
accounted for, hinder overall throughput. Furthermore, current
schedulers neglect flow-level imbalances within coflows, leading to
internal bottlenecks.

This work addresses this challenge by introducing Hermod, a
comprehensive coflow scheduler for LLM training. Through an in-
depth analysis of the training DAG, we identify three model-specific

https://doi.org/10.1145/3718958.3750467
https://doi.org/10.1145/3718958.3750467

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Xinchen Wan et al.

F1

Iteration-i Iteration-i+1

GPU
Computation

EP coflows

F2 Fn Bn B1 F1 F2
… …… B2

PP coflows

DP coflows

ef1 ef2 efn ebn eb2 eb1 ef1 ef2

pf2pf1 pbn

d2

pf1pb2

d1

F1
ef1 pb1Forward/Backward layer-1B1 Forward/Backward EP/PP/DP coflowsd1

ef1,1 pf1,1Microbatch-1

ef1,2 pf1,2Microbatch-2

Microbatch-1

Microbatch-2
dn

dn-1

ef1 pf1

d1d2

eb1

Bn-1

ebn-1

pbn-1

dn-1

dnpbn-1,1ebn-1,1

ebn-1,2 pbn-1,2

Case IIICase IICase I
d2

Figure 1: Computation and coflows in LLM training.
Case I Case II Case III

Priority factor MicrobatchID Coflow type LayerID
(Lower is better) (EP & PP > DP) (Lower is better)

Table 1: Priority factors used to assign priority for three cases.
factors—microbatch ID, coflow type, and layer ID—that directly
inform scheduling priorities. Hermod leverages these factors to
enforce inter-coflow prioritization aligned with the DAG, enabling
comprehensive cluster-wide coordination across all communication
patterns. The remainder of this paper presents the design of Hermod
(§2) and evaluates its effectiveness (§3).

2 Hermod Design
2.1 LLM Training DAG with Coflows
We revisit the LLM training DAG from a coflow scheduling per-
spective, focusing on optimizing coflow overlaps across inter-host
parallelisms—EP, PP, and DP—to minimize job completion time
(JCT). Our goal is to derive a cluster-wide scheduling policy that
aligns network resource allocation with training dependencies.

In typical LLM training, the DAG is fixed by the topology, par-
allelization strategy, and worker placement. This DAG dictates
coflow dependencies across iterations. Figure 1 illustrates a con-
ventional DAG for training an MoE model with ZeRO-2 and 1F1B
optimizations. Each iteration consists of forward propagation (FP)
and backward propagation (BP). Within each iteration, EP coflows
occur twice per MoE layer group for token dispatch and gathering,
followed by PP coflows to transmit intermediate results between
layers [18]. These operations repeat across layers and microbatches.
During BP of the current iteration and FP of the next, DP coflows
perform ReduceScatter and AllGather for gradient synchroniza-
tion and parameter updates [9, 14, 16, 24].

A systematic analysis of the DAG identifies three key cases of
coflow overlap, marked by red rectangles in Figure 1: (I) EP–PP
overlaps across microbatches, (II) EP, PP, and DP overlaps during
BP, and (III) cross-iteration overlaps between FP EP/PP coflows and
BP DP coflows. These overlaps underscore the need for fine-grained
coflow prioritization to mitigate resource contention and inefficient
communication ordering.

2.2 Model Factor-Driven Priority Assignment
From the above cases, we identify three critical model factors—microbatch
ID (MID), coflow type (CType), and layer ID (LID)—that uniquely
characterize and prioritize coflows. These factors are application-
defined, static throughout training, and easily encoded for transport-

Megatron
Lina
Hermod

N
or

m
. T

hr
ou

gh
pu

t

0

5

10

of GPUs
1024 2048 4096 8192

(a) Scalability

Megatron Lina Hermod

N
or

m
. I

te
ra

tio
n

Ti
m

e

0

5

10

15

Network Bandwidth (Gbps)
40 100 200 400

(b) Different bandwidths
Figure 2: Simulation results when training Qwen-MoE.

layer scheduling. We propose a model factor–driven scheduling
strategy that assigns priorities to minimize critical-path blockage
and maximize communication–computation overlap.

As summarized in Table 1, coflows with smaller MIDs receive the
highest priority, followed by CType (EP/PP over DP) and then LID
(lower layers prioritized). This ordering favors earlier microbatches
and time-critical coflows, ensuring efficient training progression.
The strict priority hierarchy is enforced cluster-wide across all itera-
tions. We also analyze all potential conflicts to maintain consistency
, resulting in a deterministic, conflict-free priority scheme across
the cluster.

3 Evaluation And Future Work

Simulation Setup. We build our simulator on FlexFlow [1] and
htsim [2], following themethodology of [21].We extend FlexFlow to
generate DAGs representing both computation and communication
for all coflow types. Simulations use Qwen1.5-MoE [23] as the
default model, comparing Hermod with Megatron and Lina [10].
Unless otherwise noted, we simulate a cluster of 8-GPU servers
connected via a full-bisection fat-tree with 100Gbps links and 1µs
propagation delay.
Scalability. We evaluate scalability by increasing cluster size from
1,024 to 8,192 GPUs. As shown in Figure 2a, Megatron suffers from
poor throughput due to uncoordinated coflow handling. Lina im-
proves on this with endhost prioritization but overlooks PP coflows.
Hermod achieves up to 1.3× higher throughput by performing
cluster-wide coflow scheduling.
Network Bandwidth. We assess performance under varying band-
widths (40–400Gbps), shown in Figure 2. Hermod consistently out-
performs baselines. At 40Gbps, Hermod yields up to 1.78× speedup
over Megatron via coordinated prioritization. At 400Gbps, network
bottlenecks diminish, but Hermod still provides up to 2× higher
throughput by mitigating EP/PP blocking and enabling DP overlap.
Future Work. We plan to extend Hermod to better resolve intra-
coflow contention (e.g., imbalanced EP coflows) and validate its
effectiveness in real-world LLM training under larger clusters [22].

Coflow Scheduling for LLM Training SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

References
[1] Flexflow source code. https://github.com/flexflow/FlexFlow, 2024.
[2] htsim packet-level simulator. https://github.com/nets-cs-pub-ro/NDP/wiki/ND

P-Simulator, 2024.
[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural infor-
mation processing systems, 33:1877–1901, 2020.

[4] Jiamin Cao, Yu Guan, Kun Qian, Jiaqi Gao, Wencong Xiao, Jianbo Dong, Binzhang
Fu, Dennis Cai, and Ennan Zhai. Crux: Gpu-efficient communication scheduling
for deep learning training. In Proceedings of the ACM SIGCOMM 2024 Conference,
ACM SIGCOMM ’24, page 1–15, New York, NY, USA, 2024. Association for
Computing Machinery.

[5] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[6] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu, Guilherme
Goes, Hany Morsy, Rohit Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty,
Jingyi Yang, et al. Rdma over ethernet for distributed training at meta scale. In
Proceedings of the ACM SIGCOMM 2024 Conference, pages 57–70, 2024.

[7] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. Advances
in neural information processing systems, 32, 2019.

[8] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
A unified architecture for accelerating distributed {DNN} training in heteroge-
neous {GPU/CPU} clusters. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 463–479, 2020.

[9] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang,
Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, et al. {MegaScale}: Scaling
large language model training to more than 10,000 {GPUs}. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24), pages
745–760, 2024.

[10] Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and Hong Xu. Accelerating
distributed {MoE} training and inference with lina. In 2023 USENIX Annual
Technical Conference (USENIX ATC 23), pages 945–959, 2023.

[11] Juncai Liu, Jessie Hui Wang, and Yimin Jiang. Janus: A unified distributed
training framework for sparse mixture-of-experts models. In Proceedings of the
ACM SIGCOMM 2023 Conference, pages 486–498, 2023.

[12] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream:
Generalized pipeline parallelism for dnn training. In Proceedings of the 27th ACM
symposium on operating systems principles, pages 1–15, 2019.

[13] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.
[14] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan

Wu, and Chuanxiong Guo. A generic communication scheduler for distributed
dnn training acceleration. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 16–29, 2019.

[15] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan, Binzhang Fu,
Xuemei Shi, Fangbo Zhu, Rui Miao, et al. Alibaba hpn: A data center network
for large language model training. In Proceedings of the ACM SIGCOMM 2024
Conference, pages 691–706, 2024.

[16] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero:
Memory optimizations toward training trillion parameter models. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–16. IEEE, 2020.

[17] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language
models using model parallelism. arXiv preprint arXiv:1909.08053, 2019.

[18] Xinchen Wan, Kaiqiang Xu, Xudong Liao, Yilun Jin, Kai Chen, and Xin Jin.
Scalable and efficient full-graph gnn training for large graphs. Proceedings of the
ACM on Management of Data, 1(2):1–23, 2023.

[19] XinchenWan, Hong Zhang, HaoWang, Shuihai Hu, Junxue Zhang, and Kai Chen.
Rat-resilient allreduce tree for distributed machine learning. In Proceedings of
the 4th Asia-Pacific Workshop on Networking, pages 52–57, 2020.

[20] Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan, Jiacheng Xia, Gaoxiong
Zeng, Wei Bai, Junchen Jiang, Yong Wang, and Kai Chen. Towards {Domain-
Specific} network transport for distributed {DNN} training. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24), pages
1421–1443, 2024.

[21] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao Jia,
Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch. {TopoOpt}: Co-
optimizing network topology and parallelization strategy for distributed training
jobs. In 20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), pages 739–767, 2023.

[22] Kaiqiang Xu, Xinchen Wan, Hao Wang, Zhenghang Ren, Xudong Liao, Decang
Sun, Chaoliang Zeng, and Kai Chen. Tacc: A full-stack cloud computing infras-

tructure for machine learning tasks. arXiv preprint arXiv:2110.01556, 2021.
[23] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Cheng-

peng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report.
arXiv preprint arXiv:2407.10671, 2024.

[24] Hao Zhang, Zeyu Zheng, Shizhen Xu,Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting
Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing. Poseidon: An efficient commu-
nication architecture for distributed deep learning on {GPU} clusters. In 2017
USENIX Annual Technical Conference (USENIX ATC 17), pages 181–193, 2017.

https://github.com/flexflow/FlexFlow
https://github.com/nets-cs-pub-ro/NDP/wiki/NDP-Simulator
https://github.com/nets-cs-pub-ro/NDP/wiki/NDP-Simulator

	Abstract
	1 Introduction
	2 Hermod Design
	2.1 LLM Training DAG with Coflows
	2.2 Model Factor-Driven Priority Assignment

	3 Evaluation And Future Work
	References

