
Harmonia: A Unified Framework for Heterogeneous
FPGA Acceleration in the Cloud

Luyang Li
liluyang@ict.ac.cn

Institute of Computing Technology,
Chinese Academy of Sciences

University of Chinese Academy of
Sciences

Beijing, China

Heng Pan
panheng@cnic.cn

Computer Network Information
Center, Chinese Academy of Sciences

Beijing, China

Xinchen Wan
xinchen.wan@connect.ust.hk

Hong Kong University of Science and
Technology

Hong Kong SAR, China

Kai Lv
lvkai20z@ict.ac.cn

Institute of Computing Technology,
Chinese Academy of Sciences

Beijing, China

Zilong Wang
zwangfb@connect.ust.hk

Hong Kong University of Science and
Technology

Hong Kong SAR, China

Qian Zhao
zhaoqian.cn@bytedance.com

Douyin Co., Ltd.
Beijing, China

Feng Ning
snoopy068@126.com

Douyin Co., Ltd.
Beijing, China

Qingsong Ning
ningqs@foxmail.com

Douyin Co., Ltd.
Beijing, China

Shideng Zhang
zhangshideng@bytedance.com

Douyin Co., Ltd.
Beijing, China

Zhenyu Li
zyli@ict.ac.cn

Institute of Computing Technology,
Chinese Academy of Sciences

University of Chinese Academy of
Sciences

Beijing, China

Layong Luo
luolayong@gmail.com

Researcher
Beijing, China

Gaogang Xie
xie@cnic.cn

Computer Network Information
Center, Chinese Academy of Sciences
University of Chinese Academy of

Sciences
Beijing, China

Abstract
FPGAs are gaining popularity in the cloud as accelerators
for various applications. To make FPGAs more accessible for
users and streamline system management, cloud providers
have widely adopted the shell-role architecture on their ho-
mogeneous FPGA servers. However, the increasing hetero-
geneity of cloud FPGAs poses new challenges for this ar-
chitecture. Previous studies either focus on homogeneous
FPGAs or only partially address the portability issues for
roles, while still requiring laborious shell development for
providers and ad-hoc software modifications for users.
This paper presents Harmonia, a unified framework for

heterogeneous FPGA acceleration in the cloud. Harmonia op-
erates on two layers: a platform-specific layer that abstracts

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1079-7/2025/03.
https://doi.org/10.1145/3676641.3716259

hardware differences and a platform-independent layer that
provides a unified shell for diverse roles and host software.
In detail, Harmonia provides automated platform adapters
and lightweight interface wrappers to manage hardware
differences. Next, it builds a modularized shell composed
of Reusable Building Blocks and employs hierarchical tai-
loring to provide a resource-efficient and easy-to-use shell
for different roles. Finally, it presents a command-based in-
terface to minimize software modifications across distinct
platforms. Harmonia has been deployed in a large service
provider, Douyin, for several years. It reduces shell develop-
ment workloads by 69%-93% and simplifies role and software
configurations with negligible overhead (<0.63%). Compared
with other frameworks, Harmonia supports cross-vendor
FPGAs, reduces resource consumption by 3.5%-14.9% and
simplifies software configurations by 15-23×while maintain-
ing comparable performance.

CCS Concepts: • Hardware → Reconfigurable logic and
FPGAs; • Computer systems organization → Heteroge-
neous (hybrid) systems.

Keywords: Heterogeneous FPGA; Shell-Role Architecture;
Cloud Framework; Reusability;

https://orcid.org/0009-0004-3814-3776
https://orcid.org/0000-0002-5506-5958
https://orcid.org/0000-0001-6503-5309
https://orcid.org/0009-0005-7675-5711
https://orcid.org/0000-0003-3184-4081
https://orcid.org/0000-0003-0032-1974
https://orcid.org/0009-0009-2602-3407
https://orcid.org/0009-0001-4951-3099
https://orcid.org/0009-0007-7167-5768
https://orcid.org/0000-0002-9959-1124
https://orcid.org/0009-0005-0371-1515
https://orcid.org/0000-0003-4964-1135
https://doi.org/10.1145/3676641.3716259


ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Luyang Li et al.

ACM Reference Format:
Luyang Li, Heng Pan, Xinchen Wan, Kai Lv, Zilong Wang, Qian
Zhao, Feng Ning, Qingsong Ning, Shideng Zhang, Zhenyu Li, Lay-
ong Luo, and Gaogang Xie. 2025. Harmonia: A Unified Framework
for Heterogeneous FPGA Acceleration in the Cloud. In Proceedings
of the 30th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2 (ASP-
LOS ’25), March 30-April 3, 2025, Rotterdam, Netherlands. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3676641.3716259

1 Introduction
Field-Programmable Gate Arrays (FPGAs) have garnered
attraction in the cloud due to their capacity to enhance per-
formance and efficiency for various cloud applications [15,
19, 55, 77, 98, 102, 104, 105]. Developing applications on FP-
GAs requires users to not only implement application logic
itself but also manage complex I/O connectivity and intricate
system integration. Thus, major commercial cloud providers
(e.g., AWS [3], Azure [62], etc.) have introduced a shell-role
architecture on homogeneous FPGA clusters [16, 18, 70]. In
this architecture, the FPGA logic is divided into two parti-
tions: the provider-owned region (a.k.a., shell) and the user-
owned region (a.k.a., role) (see Figure 1). The role contains
different application logic, while the shell is responsible for
managing the FPGAs, providing a range of common services
for roles (e.g., Ethernet, DMA, etc.), and handling data and
control exchanges with the host software. This architecture
significantly alleviates the development burden for users.

However, the growing heterogeneity of cloud FPGAs poses
new challenges for the shell-role architecture. First, providers
have to build individual shells tailored to new FPGA devices
due to significant differences in FPGA architectures [3, 16, 70]
and hardware capabilities [32, 50]. For example, the Smart-
NIC architecture [16], used in networking applications, re-
quires high-speed network interfaces (e.g., QSFP112 [82]) and
transport stacks (e.g., RDMA [91]). In contrast, the SmartSSD
architecture [50], deployed in storage applications, demands
extensive storage capacity (e.g., HBM [41]). Addressing these
hardware disparities requires substantial development efforts
in shells (§2.3). Second, providers often select FPGAs from
different vendors for supply chain security and cost con-
siderations [11]. These vendors define their own hardware
interfaces, configurations, and compilation methods. When
users migrate applications to new FPGAs, they have to man-
ually adjust both roles and host software, which involves
considerable ad-hoc and error-prone modifications (§2.3).

To address the above issues, recent studies present FPGA
virtualization [14, 18, 49, 99–101] and portable operating sys-
tem (OSs) abstractions [44, 47, 59, 79, 103]. These approaches
aim to provide portable roles that allow users to deploy ap-
plications seamlessly on distinct FPGAs. Specifically, FPGA
virtualization creates an intermediate layer to deploy roles on
platform-agnostic virtual FPGAs, while hardware mappings
rely on vendor-specific frameworks [99, 101]. FPGA OSs like

Shell
Provider-
owned

Software A Software B

Role A

Role B

Host

User-owned

User-owned

Homogeneous FPGAs

FPGA
Logic

User-ownedUser-owned

Data & Control

···
Mgmt
DMA

Ethernet

Figure 1. The shell-role architecture. The user-owned role
contains application logic; the provider-owned shellmanages
FPGAs, provides common services to roles and host software.

AmorphOS [44] and Coyote [47] directly provide a unified
interface for roles across different FPGA platforms through
dynamic wrappers. However, these methods still require la-
borious reconstruction of shells and ad-hoc modifications
to the host software when migrating to new FPGAs (see
§2.3). Commercial frameworks (e.g., OFS [66] in oneAPI [65]
and Vitis [86]) provide off-the-shelf shells that support a set
of FPGAs. Nevertheless, the design and integration of these
shells are closely tailored to specific FPGA series (e.g., Agilex,
Alveo, etc.). When deploying applications onto FPGAs with
different architectures and peripherals, providers still have
to invest substantial efforts in modifying shells to ensure
cross-vendor compatibility.
As a result, we move a step further and take the shell

and host software development into account, providing a
comprehensive framework to address heterogeneity issues.
Specifically, this framework should cover the following objec-
tives: (i) providing a unified shell compatible with different
FPGAs without laborious development workloads for plat-
form providers; (ii) supporting portable roles with simple
interfaces and configurations for applications; and (iii) offer-
ing a consistent host interface that without requiring ad-hoc
modifications to simplify software integration.
To this end, we present Harmonia, a unified framework

for heterogeneous FPGA acceleration in the cloud. Harmonia
consists of two layers: a platform-specific layer that abstracts
the hardware differences and a platform-independent layer
that provides a unified shell for diverse roles and host soft-
ware. Specifically, Harmonia develops automated platform
adapters to manage platform-specific configurations and
employs lightweight interface wrappers to cover interface
variations (§3.2). To create a unified shell without exten-
sive development workloads, Harmonia proposes a modu-
larized shell composed of a series of Reusable Building Block
(RBB) abstractions (§3.3.1). To conserve on-chip resources
for roles and simplify user configurations, Harmonia pro-
vides a hierarchical shell tailoring mechanism to generate
application-specific shell instances (§3.3.2). To ease host soft-
ware development and integration, Harmonia presents a

https://doi.org/10.1145/3676641.3716259


Harmonia: A Unified Framework for Heterogeneous FPGA Acceleration in the Cloud ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 1. Existing frameworks either target homogeneous FPGA platforms or partially address heterogeneous issues. In this
paper, Harmonia aims to address heterogeneity issues comprehensively.

Framework Heterogeneity Unified Shell Portable Role∗ Consistent Host IF

Cloud Platform [2, 3, 62] ✘ ✔ ✘ ✔
Virtualization [14, 45, 49, 99–101] ✔ ✘ ✔ ✘
FPGA OS [44, 47, 59, 79, 103] ✔ △ ✔ ✘

Commercial Framework [65, 66, 86] ✔ △ ✔ △
Harmonia ✔ ✔ ✔ ✔

∗: migrating roles to FPGA platforms that have appropriate hardware capabilities requires only minimal modifications.
△: requires laborious development workloads or ad-hoc modifications when deployed on FPGAs from different vendors.

command-based interface that abstracts control operations
to reduce ad-hoc software modifications (§3.3.3).
We have implemented the Harmonia framework and de-

ployed in the cloud datacenters of Douyin over several years
(§4). It supports a variety of internal applications across tens
of thousands of FPGA accelerators, including networking, se-
curity, computing, and infrastructure applications (§5). The
production results demonstrate that Harmonia can reduce
shell development workloads by 69%-93%, save hardware
resources by 3%-25.1% with shell tailoring, and reduce soft-
ware modifications by 88-107× using command-based inter-
faces. Importantly, Harmonia maintains the throughput and
latency of applications with negligible resource overhead
(<0.63%). Compared to commercial frameworks (Vitis and
oneAPI) and open-source frameworks (Coyote), Harmonia
lowers shell resource consumption by 3.5%-14.9%, supports
cross-vendor FPGAs, simplifies 15-23× software configura-
tions, while achieving comparable throughput and latency
across multiple benchmarks.

As a summary, Table 1 compares Harmonia with previous
frameworks, highlighting their primary differences. Har-
monia aims to provide a unified framework that addresses
heterogeneity issues for shells, roles, and host software to
facilitate heterogeneous FPGA acceleration in the cloud.

This paper makes the following contributions:

• We conduct practical experiments to demonstrate the chal-
lenges posed by FPGA heterogeneity in cloud applications,
which are only partially addressed in previous work (§2).

• We design a modularized shell composed of novel RBB
abstractions to simplify development efforts (§3.3.1), a
hierarchical shell tailoring method to provide resource-
efficient and easy-to-use shells for roles (§3.3.2), and a
command-based interface to ease host software develop-
ments and integrations (§3.3.3).

• We have implemented Harmonia and deployed it at cloud-
scale to a large service provider with extensive validation
(§4). Practical results demonstrate its benefits for hetero-
geneous FPGA applications (§5).

2 Background & Motivation
2.1 Cloud FPGA Acceleration Overview
In recent years, cloud providers have incorporated FPGAs
into their infrastructures [2, 3, 62] to accelerate applica-
tions, such as networking [32, 98], storage [15, 55], and ma-
chine learning [80, 102], etc. They typically employ the shell-
role architecture [16, 18, 70] for FPGA-accelerated applica-
tions (Figure 1), which consists of three main components:

• Shell. The shell acts as the FPGA OS to manage FPGA
resources and provide common services to improve the
usability of cloud FPGAs [70, 103]. A production-grade
shell entails multiple functionalities, such as I/O connec-
tivity [71, 81], memory management [48], dynamic con-
figuration [47], health monitoring [70], and more.

• Role. The role refers to the accelerated application logic
that is partially or fully offloaded onto FPGA devices. Roles
typically utilize the common services (e.g., Ethernet [81],
DMA [71], etc.) offered by the shell to establish communi-
cation with cloud networks and hosts.

• Host Software. The host software communicates with the
FPGAs for data exchange and control operations. During
application deployment, it performs initialization tasks
such as table configuration [98] and task enablement [19].
At runtime, it handles data exchange for tasks involving
software-hardware co-design [25, 94].

2.2 Increasing Heterogeneity of Cloud FPGAs
Some cloud providers deploy homogeneous FPGA clusters
to maintain infrastructure manageability and reduce oper-
ation costs [2, 3, 62]. However, heterogeneous FPGAs are
increasing in some scenarios due to several practical reasons:
(i) Distinct acceleration architectures. Different applica-
tions exhibit unique functions and workloads that demand
specific acceleration architectures to achieve desired perfor-
mance. For example, networking applications [21, 57, 98]
require FPGA integration of high-speed network interfaces
and network protocol stacks. They deploy FPGAs between
network switches and hosts as SmartNICs [32]. In contrast,



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Luyang Li et al.

Software A Software B

Role A

Host

Heterogeneous FPGAs

FPGA
Logic

Shell B

Shell A

Role B

W
B

1

W
A

2

vFPG
A

3

Platform

Application

Vitis, OFS/oneAPI,
Harmonia, etc.

OpenCL, HLS etc.
Provide cross-platform program

model for user applications

Purpose Related WorkAbstraction Level

Provide FPGA hardware resource
abstraction for platform providers

& user applicationsOur focus

(a) Different abstraction levels and our focal point.

(b) Major heterogeneity challenges and prior works focal point.

WA: Dynamic wrapper for shell A

vFPGA: virtual FPGA abstraction

Prior work focus

Figure 2. (a). Harmonia focuses on a platform-level hardware
resource abstraction. (b). Heterogeneous FPGAs require shell
reconstructions (➊) and interface modifications for roles and
host software (➋&➌), while prior works partially addressing
portability challenges for roles (➋).

storage applications [15] desire FPGAs equipped with high-
capacity memory and incorporate I/O operators like com-
pression [10], which involve attaching FPGAs directly to
SSDs as SmartSSD [50]. Hence, the internal architectures
and hardware capabilities can vary significantly across FP-
GAs.
(ii) Customized FPGA devices. Some cloud providers or-
der customized FPGA devices from different vendors (e.g.,
Intel[34], Xilinx[5], etc.). On the one hand, these FPGAs are
equipped with suitable on-chip resources and off-chip pe-
ripherals tailored to the target applications, which helps to
reduce costs when deployed at scale. On the other hand, us-
ing multi-vendor FPGAs can also provide backup options,
enhancing supply chain security. These devices exhibit dis-
tinct capabilities and vendor-specific toolkits for users.
(iii)Multiple FPGAgenerations. In our cloud, the lifecycle
of FPGA servers (commodity servers equipped with FPGAs)
typically extends for at least four years, while new FPGA
devices are typically introduced every one to two years [5].
Consequently, multiple generations of FPGAs can coexist
during the evolution of applications. They exhibit differences
in IP properties such as interfaces and configurations.

2.3 Prior Works & Limitations
Hardware abstraction is a common method to address het-
erogeneity. Prior works abstract FPGAs at different levels
based on the needs of different developers. As shown in
Figure 2a, application-level abstractions aim to streamline
user application development by providing a unified cross-
platform programming model (e.g., HLS [22], OpenCL [63],

etc.). Platform-level abstractions further allows fine-grained
management and optimization of hardware resources for
providers (e.g., shell-role platforms [66, 70, 86]). We focus on
designs at the platform level in this paper.

FPGA virtualization [14, 45, 49, 99–101] and portable OSs
[44, 47, 59, 79, 103] are proposed to address the heterogeneity
challenges, as shown in Figure 2b. FPGA virtualization ab-
stracts the platform-agnostic virtual FPGA to enable portable
role development, while the hardware deployment relies on
different vendor-specific shells (e.g., Vitis [86], etc.). FPGA
OSs employ dynamic wrappers tailored to each shell, en-
abling roles to connect directly to the shell via a unified inter-
face. The above works address the portability issue for roles;
however, they still involve laborious development workloads
for the shell and ad-hoc modifications to the host software:
(i) Laborious development workloads for the shell. In
practical FPGA acceleration development, we observe three
main factors that cause laborious development workloads:

• First, the shell demands extensive development and vali-
dation efforts to ensure its integrity and stability. Apart
from using off-the-shelf IPs directly, the shell also requires
massive in-house design and development to cover the
functionalities mentioned in §2.1. We compare the devel-
opment workloads between shells and roles (measured
by the ratio of hardware logic codes) in five typical cloud
applications (detailed in §5.1). After excluding the script-
generated portions that can be automated by vendor tools
[35, 88], the handcraft development workloads are repre-
sented in Figure 3a. Shells occupy the majority of work-
loads (66%- 87%). Considering a moderate FPGA project
that includes tens of thousands of lines of hardware code
and requires several months for verification [19, 97], cus-
tomized shell development can be time-consuming.

• Second, the platform-specific module differences (e.g., in-
terfaces and configurations) make it difficult to directly
reuse shell modules. In detail, we analyze module differ-
ences (measured by the number of interfaces and configu-
rations) across common I/O modules in shells for different
FPGAs (i.e., xilinx [5] and intel [34]). Figure 3b illustrates
the massive disparities of properties among common mod-
ules, ranging from tens to hundreds. Therefore, providers
have to perform intricate modifications instead of simply
reusing shell modules across different FPGAs.

• Finally, platform providers have to reconstruct shells to
support new FPGA devices instead of making a one-time
effort. As the number and types of heterogeneous FPGAs
increase, the demand for developing new shells keeps
growing. Figure 3c illustrates the annual deployment of
new FPGA devices and the total number of FPGAs in our
cloud. The increasing variety of heterogeneous FPGAs
drives us to seek an efficient solution for constructing
shells to reduce development workloads.



Harmonia: A Unified Framework for Heterogeneous FPGA Acceleration in the Cloud ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Sec-
Gateway

Layer
-4 LB

Retrie-
val

Board
Test

Host
Network

Applications

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

 o
f D

ev
el

op
m

en
t 

W
or

k
lo

ad
s

0.87

0.13

0.79

0.21

0.79

0.21

0.72

0.28

0.66

0.34

Shell Role

(a) Production-grade shells occupy
the majority of FPGA logic develop-
ment workloads.

DDR TLP DMA PCIe MAC

Vendor-specific IPs

100

101

102

103

Ve
n

d
or

-s
p

ec
if

ic
 M

od
u

le
 D

if
fe

re
n

ce
s Interface Configuration

(b) Vendor-specific IPs exhibit mas-
sive interface and configuration dif-
ferences across FPGAs.

2020 2021 2022 2023 2024

Year

0

1

2

3

4

5

N
u

m
b

er
 o

f N
ew

 F
P

G
A

s/
Ye

ar

0

5

10

15

N
u

m
b

er
 o

f T
ot

al
 F

P
G

A
s

New FPGAs Total FPGAs

(c) The total number of heterogeneous
FPGAs in our cloud is increasing every
year.

Shell A Shell B

Host Software

Heterogeneous FPGAs

Driver A
reg write/read reg write/read

reg remapping reg remapping
Driver B

User Application

Reg_write(Addb,0x7)

Reg_write(Addz,0x1)

1
2
Wait(Reg_read(Stata))

n

Reg_write(Addm,Valinit)
Reg_read(Addm)

1

2

ctrl operations

place

···
Module

initialization

(d) The user application requires ad-
hoc modifications when migrating
into new FPGA platforms.

Figure 3. Heterogeneous FPGAs introduce more laborious development workloads and ad-hoc modifications.

(ii) Ad-hocmodifications to the host software. Host soft-
ware has to perceive hardware variations and make ad-hoc
modifications to ensure correct control. Specifically, commer-
cial framework (e.g., Vitis [86], OFS [66], etc.) provides a reg-
ister read/write an interface for user applications to perform
control operations. However, heterogeneous FPGAs intro-
duce differences in register widths, addresses, and function-
alities, requiring software modifications. Some frameworks
help mitigate register width and address changes in their
drivers by mapping registers into a unified address space.
Nevertheless, users still need to modify the sequence of regis-
ter operations and care about the differences in control logic
across platforms. Figure 3d shows an example of module
initialization across different FPGA platforms. For shell A,
users need to wait for the status register 𝑎 read completion
before proceeding with a series of initialization logic. In con-
trast, Shell B includes automation logic that allows users
to directly write the initial values. Thus, user applications
must consider both the register values and their operational
dependencies, which introduces complex changes.
Thus, we transition towards devising a comprehensive

solution to fully address heterogeneity challenges.

3 Harmonia Design
3.1 Framework Overview
We follow the bottom-up design principle [28] that abstracts
platform-specific differences from the underlying diverse FP-
GAs, providing a unified interface for the upper-layer shell,
role, and host software. Guided by this principle, we present
Harmonia, a unified framework to streamline the develop-
ment and deployment of heterogeneous FPGA-accelerated
applications. Figure 4 illustrates the Harmonia’s architecture:
Platform-specific layer. This layer aims to handle dispari-
ties among diverse FPGA platforms (§3.2). It comprises two
distinct components: the automated platform adapter respon-
sible for managing platform-specific configurations, and the

Heterogeneous FPGAs

Platform Adapter

Interface Wrapper

Command-based Interface

Software A Software B

Role A

Role B

Shell

Platform-
specific

Reusable
Building Blocks

H
ierarchical

ShellTailoring

Platform-
independent

Holder

Figure 4.Harmonia architecture. The platform-specific layer
manages FPGA heterogeneity and the platform-independent
layer provides a unified shell for roles and software.

lightweight interface wrapper to convert vendor-specific in-
terfaces into a uniform format. In summary, this layer acts
as a unifying bridge, ensuring seamless migration of upper
layers across heterogeneous FPGA platforms.
Platform-independent layer. This layer is independent of
specific FPGA platforms, serving the shell, role, and host soft-
ware (§3.3). Harmonia creates a unified shell abstraction to
manage FPGA chips and provide connectivity with peripher-
als using a series of Reusable Building Blocks (RBBs) abstrac-
tions (§3.3.1). To simplify interfaces and configurations for
roles and reduce unnecessary resource consumption, Harmo-
nia introduces a hierarchical shell tailoring mechanism based
on application demands (§3.3.2). To conceal the details of un-
derlying controls for the host software, Harmonia abstracts
the register-level register interface into a unified behavior-
level command-based interface for hardware-software com-
munications (§3.3.3).



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Luyang Li et al.

3.2 Platform-specific Layer

Automated platform adapter. Different FPGAs vary in
many aspects, including chip families [1, 6], peripherals [71,
81], compilation tools [35, 88], etc. To avoid error-prone
manual operations, Harmonia integrates the automated plat-
form adapters to manage platform-specific configurations.
These differences are divided into two parts based on their
dependencies: resource differences related to FPGA devices
and deployment differences related to vendors. As shown in
Figure 5, these differences are managed by two sub-adapters:

• Device adapters are responsible for hardware resource-
related configurations. Harmonia separate resource con-
figurations into two groups: the static and dynamic group.
The former maintains all the inherent resource properties
of FPGA chips and peripherals (e.g., channel numbers, vir-
tual functions, etc.), which only need to be configured once
and reused anywhere. The latter pertains to dynamic map-
ping constraints between the logic and the device, such
as I/O pins and clock mappings configured on-demand.

• Vendor adapters manages the major deployment differ-
ences among FPGA vendors like specific IP packaging for-
mat [39], compilation CAD tools [35, 88], etc. In practice,
compatibility issues between modules and deployment
environments commonly arise in heterogeneous FPGA
scenarios. For example, the common DMA engine from
different vendors [5, 34] may rely on dedicated PCIe hard
IPs and corresponding compilers [35, 88]. To avoid manual
troubleshooting, Harmonia incorporates the built-in han-
dler to structure the vendor dependencies of each module
as a series of key-value pairs and performs rigid inspec-
tions to ensure compatibility during deployment. The key
defines vendor-specific attributes such as CAD tools, IP
catalogs, etc. The values are specified with independent
version numbers to simplify dependency checks.

Both adapters are generated using vendor-provided tcl [87]
and ruby [74] scripts, enabling easy development.
Lightweight interface wrapper. Developers often utilize
third-party IPs to reduce their development efforts. These
vendor-specific IPs follow distinct interface protocols (e.g.,
AXI [4] and Avalon [9]). Consequently, replacing one ven-
dor’s IP with another requires modifications to the upper-
layer logic. To address this issue, Harmonia develops light-
weight interface wrappers that encapsulate different inter-
faces into a uniform format for the upper-layer logic.
The interface wrapper aims to fulfill the common inter-

face demands of applications while ensuring minimal perfor-
mance overhead. To achieve this, Harmonia leverages two
observations: (i) cloud applications exhibit similar charac-
teristics in data transfer and control; (ii) primary interface
protocols have similar interface types. Specifically, cloud
applications either transfer continuous data in streaming
format or block data with specific addresses and sizes. The

Clock Reset Stream Mem map Reg Irq

FPGA-A

Device Adapter A

Dynamic

I/O Pins

Clk maps

Static

Resource
Properties

FPGA-B

Device Adapter B

Dynamic

I/O Pins

Clk maps

Vendor Adapter A

Built-in handler

Vendor Adapter B

Built-in Handler
Script-

Generated

Platform Adapter

Vendor-provided IPs Vendor-provided IPs

FIFOMux Reg

Interface Wrapper Same to the left

Wire

Static

Resource
Properties

FIFOMux Reg Wire

Figure 5. Platform adapters manage platform-specific con-
figurations and interface wrappers convert vendor-specific
interfaces into a uniform format.

control operations are usually carried out by general regis-
ters of reading and writing. These data transfer and control
are also described in the major interface protocols [4, 9].
Therefore, along with the basic clock and reset signals,

Harmonia provides five basic types: 𝑐𝑙𝑜𝑐𝑘 , 𝑟𝑒𝑠𝑒𝑡 , 𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔,
𝑚𝑒𝑚 𝑚𝑎𝑝 , and 𝑟𝑒𝑔. In detail, Harmonia integrates multiple
clock and reset signals (e.g., differential clocks, soft reset,
etc.) into the clock and reset arrays. Other modules use in-
dices to select specific signals according to their performance
needs. For data interfaces, Harmonia provides 𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 and
𝑚𝑒𝑚 𝑚𝑎𝑝 interfaces. The 𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 interface specifies the
start and end of the data stream, and the𝑚𝑒𝑚𝑚𝑎𝑝 interface
defines the address and size of the data chunk. The output
data from vendor-specific IPs are stored in FIFO buffers along
with the sideband signals (e.g., masks, empty flags, etc.). Har-
monia designs fully pipelined sequential translation logic
to convert data with varying widths into the unified format
(see §3.3.1). It operates without generating bubbles in the
processing and consumes a few fixed clock cycle. For control
interfaces, Harmonia registers diverse control signals and
assigns unique addresses to access them through the register
read/write approach. To address latency-intensive signal re-
quirements, Harmonia introduces a special type, 𝑖𝑟𝑞, which
exposes raw signals to the upper-level logic.

3.3 Platform-independent Layer
3.3.1 Unified Shell Abstraction. Similar to the host OS
[58], the shell should connect applications with FPGA re-
sources. Based on this inspiration, Harmonia creates a unified
shell abstraction to manage FPGA chips and provide con-
nectivity with peripherals. As shown in Figure 6, Harmonia
abstracts a series of Reusable Building Blocks (RBBs) based
on FPGA peripherals and chips. Each RBB consists of two
parts: the specific instance and the reusable logic. The specific



Harmonia: A Unified Framework for Heterogeneous FPGA Acceleration in the Cloud ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

User Clk Domain
(R MHz)

RBB Clk Domain
(S MHz)

Param Clock Domain Crossing (User->RBB)

Write
Addr

Read
Addr

Full?

FF FFBinary to
Gray

Gray to
Binary

FF FF
Binary to
Gray

Gray to
Binary

empty?

RAM

Data
(U bits)

Data
(M bits)

1 11 1111 11

Ex-Functions
(vaddr, etc.)

Monitoring
(bps, pps, etc.)

Control
(initialization, etc.)

Network

25G
MAC

100G
MAC

TCP RDMA DDR3

HBM

DDR4 BDMA

SG
DMA

Reusable Building Blocks

NDMA

Memory Host ···

···

···

Reusable logic

Specific Instance Specific Instance Specific Instance

User Application Logic
Role

Reg Address
Alloc

1

Param Clock
Domain Crossing

Shell

Reusable logic Reusable logic Reusable logic

RBB Clk Domain
(S MHz)

User Clk Domain
(R MHz)

Param Clock Domain Crossing (RBB->User)

Write
Addr

Read
Addr

Full?

FF FFBinary to
Gray

Gray to
Binary

FF FF Binary to
Gray

Gray to
Binary

empty?

RAM

Data
(M bits)

Data
(U bits)

Stream data-if

Mem map data-if

Reg control-if

Figure 6. The unified shell abstraction with a set of Reusable
Building Blocks to operate peripherals and chips.

instance comprises various vendor-specific IPs that provide
the basic functionality for connecting with FPGA resources
(e.g., MAC[81], PCIe [71], etc.). The reusable logic provides
the common logic that extends beyond these instances, in-
cluding the Ex-function logic for performance optimization
and feature enhancement, as well as control and monitoring
logic for necessary hardware management.

Harmonia provides multiple RBBs for various cloud appli-
cations, including Network RBB for networking applications
[32, 98], Memory RBB for storage applications [55, 56], and
Host RBB for computation applications [97], as shown below:
Network RBB. Network RBB deals with network traffic,
including packet-level processing (e.g., MAC [81]) and flow-
level processing (e.g., RDMA [91]). To support diverse net-
work scenarios, Harmonia provides both the packet filter
and flow director in its Ex-function part. The packet filter
intercepts packets with destination addresses that do not
belong to the local machine, thereby supporting multicast
scenarios [27]. The flow director effectively directs incom-
ing flows to their corresponding host queues, ensuring net-
work isolation for multi-tenant environments [90]. Addi-
tionally, Network RBB monitors the real-time throughput,
packet loss, queue usage, and processing rate. It adopts the
stream interface for data transfer and a 32-bit reg interface
for control. The main parameter change lies in data-width,
which scales (128/512/2048 bits) with network advancements
(25/100/400Gbps). Harmonia uses a parameterized clock do-
main crossing to perform the data-width conversion (see dis-
cussions below). Roles can select specific network instances
(e.g., 25/100/400G MAC[30]) that fit their demands.

Memory RBB. Memory RBB manages FPGA memory re-
sources such as DDR andHBM. There are common functional
demands in these memories. For example, the memory access
pattern significantly impacts I/O efficiency [76]. Thus, Har-
monia incorporates address interleaving and hot cache mech-
anisms in the Ex-function. The address interleaving maps
data into different bank groups to improve the efficiency
of read/write operations. Meanwhile, the hot cache stores
consecutively accessed data on-chip for fast access, avoid-
ing situations where interleaved access is impossible. These
memories transfer data using the memory-mapped approach
[61]. Like other frameworks [89, 95], we provide a 512-bit
memmap interface for data transfer and a 32-bit reg interface
for control. The parameter change lies in the channel num-
ber, which depends on the underlying devices (2 channels
for DDR and 32 channels for HBM). Given the distinct per-
formance of these memories (460GB/s for HBM, 19.2GB/s for
DDR), roles should select the appropriate storage instance
(HBM/DDR) based on their application demands.
Host RBB. The RBB establishes connections with the host.
Cloud FPGAs typically communicate with the host servers
via PCIe DMA [19, 32, 98]. To ensure secure communication
in host multi-tenancy environments, Harmonia provides
multi-queue isolation in the Ex-function. The multi-queue
isolation provides 1K DMA queues to isolate the transmitted
data from different tenants. Harmonia maintains an active/in-
active state for each queue, and only schedules active queues
to improve the scheduling rate.Host RBBmonitors per-queue
information including the queue depth, transmitted packet,
and speed. It provides mem map and stream interfaces for
data transfer, along with a 32-bit reg interface for control.
The key parameter changes are the data width and clock
frequency, which double with each PCIe generation upgrade
(Gen3/4/5). Harmonia employs parameterized clock domain
crossing to handle these conversion (see the below discus-
sions). Roles should select specific PCIe instances [37] that
align with their host communication demands.
Discussion of RBB generalizability. RBB categorizes
hardware modules that provide similar functionalities. These
modules share similarities in data transfer, monitoring, and
control functions, while differing in interfaces (e.g., data
width, frequency, control signals) and performance (e.g.,
25/100G MAC, PCIe Gen3/4/5). Thus, the main purpose of
RBB is to maintain the common function reusability (e.g.,
real-time statistics, packet filter, etc.) across modules, allow-
ing roles to select specific instances (choose 25 or 100G MAC)
that match their application processing performance without
the necessity to redevelop common functions.
On the data interface, Harmonia integrates the param

clock domain crossing to perform frequency and data width
conversion. As shown in Figure 6, Roles and RBBs can op-
erate at different clock frequencies and data widths. To syn-
chronize an RBB at 𝑆 MHz clock and𝑀 bits data width with



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Luyang Li et al.

a user application at 𝑅 MHz clock and 𝑈 bits data width,
Harmonia employs the widely used asynchronous FIFO to
perform cross-domain data read and write (design details
see [23]). The clock and data width are configurable and do
not affect the data processing workflow. Users can select
instances that match 𝑆 ×𝑀 = 𝑅 ×𝑈 to achieve lossless band-
width. On the control interface, Harmonia allocates unique
addresses to different module instances and provides the
register interface for their controls.

Harmonia employs RBBs to enable common function reuse
across multiple FPGA generations. An FPGA generation
is characterized by vendors, chip families (process nodes),
and device peripherals with the technological advancement.
Specifically, Harmonia supports both commercially available
FPGAs from Xilinx and Intel, as well as in-house FPGAs.
The supported chip families span various process nodes, in-
cluding Virtex UltraScale+ (XCVU3P, XCVU9P, XCVU23P,
XCVU35P at 14/16nm)[84], Virtex UltraScale (XCVU125 at
20nm)[85], Zynq 7000 (28nm)[7], Agilex (5, 7 at 10nm)[1],
Stratix 10 (14nm)[38], and Arria 10 (20nm)[36]. For device pe-
ripherals, Harmonia provides support for PCIe Gen3x8/x16,
Gen4x8/x16, Gen5x8/x16, DDR3/4, HBM, QSFP112/56/28,
DSFP and etc. The FPGA generation evolves in parallel with
advancements in data center infrastructure. For instance,
as network link speeds increase from 25Gbps to 400Gbps
and host bandwidths expand from 8GB/s to 32GB/s, FPGAs
should be enhanced to keep pace with these advancements.

3.3.2 Hierarchical Shell Tailoring. The unified abstrac-
tion streamlines shell developments for platform providers
and provides common services for roles. However, cloud
applications have unique acceleration requirements and typ-
ically require only a subset of the features [19, 55, 98]. Pro-
viding a one-size-fits-all shell not only leads to unnecessary
hardware resource consumption but also adds configuration
complexity for roles. Therefore, Harmonia implements a hi-
erarchical shell tailoring approach that provides a resource-
efficient and easy-to-use shell for different roles.

As shown in Figure 7, Harmonia first perform the module-
level tailoring. It removes non-essential RBBs from the uni-
fied shell based on the resource and functional requirements
of the role. For the remaining RBBs, Harmonia selects in-
stances that fulfill the performance demands of data trans-
fer. For example, a BDMA instance may be chosen for bulk
data transfer, while an SGDMA instance may be chosen for
discrete data transfer. Next, Harmonia conduct the property-
level tailoring to remove properties that are not relevant to
the role. Vendor-specific instances usually provide various
interfaces and configurations to cover all scenarios, while
applications only need to focus on a subset of standardized
cloud deployment scenarios [70]. Therefore, Harmonia fur-
ther tailors the properties of instances into two parts: the
shell-oriented part and the role-oriented part, exposing only

Unified Shell

Required
Modules

Non-essential
Modules

Role-oriented
Property

Shell-oriented
Property

Role Demands Role-specific
Shell

Figure 7.Hierarchical shell tailoring, including both module
level and property level.

Data Path Control PathCommand

D
ata

queue
C
trl

queue

Shell

PCIe
DMA

DriverSoftware

Host Heterogeneous FPGAs

Role

2

6

Host2device Device2host

Application

Standalone
Tools

Standalone
Ctrl Tools

8

1

1

C
om
m
and

Interface

Cmd_read
/write(cmd_code,data)

Parser

Demux

Executor

Unified Control Kernel

Encap.

3

4

5

7

5

Buffer

67

Different Programs

Figure 8. The hardware-software interface re-abstractions
and an example walkthrough.

the necessary properties required by each role (e.g., occupied
channels, desired queues, etc.)

3.3.3 Command-based Interface. In FPGA acceleration
applications, software and hardware commonly utilize the
𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟_𝑟𝑒𝑎𝑑 and 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟_𝑤𝑟𝑖𝑡𝑒 interfaces for flexible con-
trols. While the role-specific register control logic is deter-
mined by the application and remains consistent across plat-
forms, the shell-specific register control logic is decided by
third-party IPs and varies across different FPGAs (Figure 3b).
When using the register interface, applications consider not
only the register values but also their operational depen-
dencies (§2.3). However, we observe that while register de-
tails change frequently, control operations typically remain
consistent (e.g., table read/write, module initialization, etc.).
Thus, we provide a series of commands that allow users to
issue control operations directly. Figure 8 gives a diagram of
interfaces, Harmonia provides 𝑐𝑚𝑑_𝑟𝑒𝑎𝑑 and 𝑐𝑚𝑑_𝑤𝑟𝑖𝑡𝑒 as
control interfaces for software-hardware communication.
Interface Details. The command should consider both
generality and extensibility. First, the commands should be
applicable to different FPGA architectures rather than being
specific to certain platforms using domain-specific instruc-
tions (e.g., using specific ISA [8]). Second, the commands
should support the extension to new hardware modules (e.g.,
i2c) and software (e.g., standalone control tools). To achieve
generality, Harmonia adopts the widely used packet format
in communication to define the command [13]. As illustrated
in Figure 9, the𝑉𝑒𝑟𝑠𝑖𝑜𝑛 records the update of the commands.



Harmonia: A Unified Framework for Heterogeneous FPGA Acceleration in the Cloud ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Data

Checksum···

Options(PCIe/I2C/…)

Hd Len Payload Len Dst ID

RBB ID

Data Data Data

Src ID

Instance ID Command Code

0 3 7 15 23 31

Version

Header Payload

DescriptionCommand CodeDescriptionCommand
Code

Module Reset0x0003Module Status Read0x0000

Table Write0x0004Module Status Write0x0001

······Module Initiation0x0002

Figure 9. The command format and common examples.

The following 𝐻𝑑𝐿𝑒𝑛 and 𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝐿𝑒𝑛 indicate the length
of the packet header and payload, respectively, measured in
units of four bytes to ensure alignment. The 𝑆𝑟𝑐𝐼𝐷 represents
the type of host software controllers and the 𝐷𝑠𝑡𝐼𝐷 repre-
sents the underlying hardware modules. Harmonia assigns
unique 𝑆𝑟𝑐𝐼𝐷 and 𝐷𝑠𝑡𝐼𝐷 values to differentiate between var-
ious software and hardware modules, thereby supporting the
extension to new controllers. The second set of four bytes
consists of the module operation code, which is divided into
three sub-fields. The𝑀𝑜𝑑𝑢𝑙𝑒𝐼𝐷 indicates the target modules,
whereas the 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐼𝐷 represents the specific module in-
stances. The 𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐶𝑜𝑑𝑒 specifies the dedicated control
operations defined by each RBB for its operational needs.
The 𝑂𝑝𝑡𝑖𝑜𝑛𝑠 describes the information associated with the
physical interface used, such as PCIe. For the command pay-
load, users can insert control information into the 𝐷𝑎𝑡𝑎 field,
and the 𝐶ℎ𝑒𝑐𝑘𝑆𝑢𝑚 is provided as an error handling.
Example walkthrough. Harmonia develops software that
runs on lightweight software cores within FPGAs (e.g., Nios
[64]) as a unified control kernel to centralize the command
execution. The decision to deploy soft cores in hardware
rather than on the host is due to the presence of various
controllers on production servers (such as applications, BMC,
and standalone tools), which makes unified management
more convenient in hardware. Figure 8 provides an example
walkthrough using the command-based interface:

1. Command generation: host applications or control tools
call 𝑐𝑚𝑑_𝑟𝑒𝑎𝑑/𝑤𝑟𝑖𝑡𝑒 interface to issue control operations
with 𝑐𝑚𝑑_𝑐𝑜𝑑𝑒 and𝑑𝑎𝑡𝑎. The 𝑐𝑚𝑑_𝑐𝑜𝑑𝑒 indicates the com-
mand for the control operations, while the 𝑑𝑎𝑡𝑎 carries
control data. Figure 9 presents some common commands
in Harmonia. Users can select commands to initialize or
reset hardware and retrieve their status. The driver then
generates command packets.

2. Command transfer: the driver transfers commands to
the hardware via PCIe. Harmonia integrates a separate
control queue in the DMA engine to ensure performance
isolation from the data path. These commands are sent to

the buffer of the unified control kernel (with configurable
depth) to await processing.

3. Commandparsing: the unified control kernel uses𝐻𝑑𝐿𝑒𝑛
and 𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝐿𝑒𝑛 to determine command boundaries, ex-
tracting the values of each field.

4. Command execution: the unified control kernel sequen-
tially executes commands, each of which defines its own
processing logic (such as register read/write, flash erase,
time count, etc.), identified by a unique command code.

5. Command distribution: some commands require read-
ing and writing registers in the shell and role modules.
The control kernel initiates register read/write requests to
the relevant modules based on the target𝑀𝑜𝑑𝑢𝑙𝑒𝐼𝐷 and
𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐼𝐷 through the 𝑟𝑒𝑔 interface.

6. Command encapsulation: the read response data (e.g.,
temperatures, voltages, performance statistics, etc.) are
encapsulated in the unified control kernel as command
response packets and fed back to the host software.

7. Command upload: The response command packet is
returned to the software through the same DMA engine
and then delivered to the corresponding host software
based on the 𝑠𝑟𝑐𝐼𝐷 specified in the command.

4 Implementation
We have implemented the Harmonia and deployed it to a
large service provider for several years. Here, we introduce
the lifecycle of cloud FPGA applications with Harmonia:
Stage 1, Requirement Analysis. A feasibility validation
is conducted to evaluate the acceleration benefits. Users pro-
vide application performance bottlenecks. Next, the hard-
ware designers estimate the benefits of using FPGA acceler-
ation through proof-of-concept (PoC) validation.
Stage 2, Design & Development. FPGA-accelerated appli-
cations are divided into two parts: the shell part designed
by the platform provider, and the role part along with host
software designed by the user:

• Shell. Platform providers build platform adapters and in-
terface wrappers for new FPGA devices while creating
a unified shell and tailoring it to a role-specific instance.
First, providers build device and vendor adapters for new
FPGAdevices as described in §3.2. Next, the lightweight in-
terface wrappers are added for vendor-specific IPs used in
RBBs. These components can effectively manage platform-
specific configurations. Therefore, providers can effort-
lessly create a unified shell by utilizing RBBs from the
common library with just on-demand modifications to
some logic details. Finally, providers perform hierarchical
shell tailoring to generate a role-specific instance (§3.3.2).

• Role & Software. The role and software can be developed
independently based on the unified abstraction, without
concerns about the adaptation to different underlying
platforms. Once the development is finished, the role is



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Luyang Li et al.

connected to the shell to form a complete FPGA logic, and
the software is integrated into the project.

• Project implementation. Harmonia provides the au-
tomated integration toolchains. Firstly, Harmonia loads
the vendor adapter and checks the dependencies between
modules and environments (§3.2). After ensuring that
there are no dependency conflicts, Harmonia completes
platform configurations and invokes corresponding CAD
tools for compilation (e.g., Vivado [88], Quartus [35]). Fi-
nally, the FPGA executable bitstream and software are
packaged together into a consolidated project file.

Stage3, Integration Test. This stage aims to evaluate the
overall functionality, performance, and stability of the gen-
erated project. Testers perform rigorous integration testing
to cover every component in the system, ensuring that each
part is thoroughly validated before online deployment.
Stage 4, Deployment. The release projects are ultimately
deployed in the corresponding application clusters, involving
software installation and hardware configuration. During
this process, scripts in the platform adapter automate hard-
ware configuration, environmental dependency checks, and
hardware initialization based on the deployed FPGAs.

5 Evaluation
In this section, we evaluate Harmonia using a series of bench-
marks and diverse real-world cloud applications on hetero-
geneous FPGAs by addressing the following questions:
• What are the benefits of Harmonia’s component
design?We use micro-benchmarks to show that the light-
weight interface wrapper maintains module throughput
and latency; the hierarchical shell tailoring lowers 3-25.1%
resource usage for shells and simplifies 8.8-19.8× con-
figuration items for roles; the command-based interface
reduces 88-107× register modifications for host software.

• What are the benefits and overheads of Harmonia
for cloud FPGA application? We evaluate a variety
of real-world cloud applications built on Harmonia. The
results show that Harmonia reduces development work-
loads by 69%-93% with negligible resource overhead (<
0.63%) and minimal performance impact (< 1%).

• How does Harmonia compare against other frame-
works?We compare Harmonia with representative frame-
works (i.e., Vitis, oneAPI, and Coyote). The results show
that Harmonia reduces shell resource usage by 3.5%-14.9%,
supports cross-vendor FPGAs, and simplifies software
configurations by 15-23×, while maintaining comparable
throughput and latency across a range of benchmarks.

5.1 Experimental Setup

Applications. We select five real-world FPGA-accelerated
applications with different acceleration architectures and
functions. As shown in Table 2, the Sec-Gateway deploys

Table 2. Selected FPGA-accelerated applications and hetero-
geneous FPGA cards.

Application Architecture Type Function

Sec-Gateway BITW Security DCI access control
Layer-4 LB BITW Network Layer-4 load balancer

Host Network BITW Network Network offloading
Retrieval Look-aside Computation Embedding retrieval
Board Test △ Infrastructure Custom board testing

FPGA Vendor Chip Peripheral

Device A Xilinx XCVU35P HBM,DDR,QSFP×2, PCIe Gen4×8
Device B Internal XCVU9P DDR×2, QSFP×2, PCIe Gen3×16
Device C Internal AGILEX®7 DSFP×2, PCIe Gen4×16
Device D Intel AGILEX®7 QSFP×2, PCIe Gen4×16, DDR

BITW: Bump-in-the-wire architecture.
△ indicates that it supports diverse architectures.

the FPGAs at the cloud network boundary to prevent cross-
network malicious traffic [19, 105]. FPGAs filter out specific
traffic based on the deployed policies. The Layer-4 LB pro-
vides layer-4 stateful load-balancing services for public ap-
plications [29, 68]. FPGAs work as SmartNICs to distribute
incoming flows to many real servers. The Host Networking
offload network functions (e.g., Checksum [20], OVS [67],
etc.) into FPGAs. The Retrieval chooses relevant candidates
from a large corpus for recommendation systems [54] and
FPGAs accelerate the similarity calculation and top-K selec-
tion. The Board Test serves infrastructure services to test the
performance of custom FPGA boards.
FPGAs. To comprehensively evaluate FPGA heterogeneity,
we select four typical FPGA devices that have widespread
deployment in our cloud with distinct vendors, chip families,
and peripherals, as illustrated in Table 2.
RBBs. We select three common RBBs in cloud applications
including Network, Memory and Host as described in §3.3.1
to evaluate Harmonia at the module level.
Frameworks. We compare Harmonia with frameworks
that provide platform-level abstractions (see §2.3), including
commercial frameworks (Vitis [86] and oneAPI [65]) and
open-source frameworks (Coyote [47]).
Benchmarks. The framework benchmarks cover three im-
portant categories for cloud FPGA applications, including
computation, storage and networking. Matrix multiplica-
tion [60] represents a typical compute-intensive task. we
perform single-precision floating-point matrix calculations
for matrices sized 64 × 64 across 1024 iterations, measur-
ing the number of matrix calculations per second. Database
access [24] is a storage-intensive task. we deploy a vector
database on external memory and sequentially, fixedly, and
randomly read and write 32-bit vectors to measure the num-
ber of vectors processed per second. TCP transmission [17] is
a communication-intensive task. We deploy FPGAs on two



Harmonia: A Unified Framework for Heterogeneous FPGA Acceleration in the Cloud ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

64 128 256 512 1024
Packet Size (B)

0

2

4

6

8

10

12

T
hr

ou
gh

tp
ut

 (
G

B
ps

)

0

20

40

60

80

La
te

nc
y 

(n
s)

Native IF(tpt)
Use Wrapper(tpt)

Native IF(lat)
Use Wrapper(lat)

(a) The performance of MAC Module.

1K 2K 4K 8K 16K
Packet Size (B)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

T
h

ro
u

gh
tp

u
t (

G
B

p
s)

0

250

500

750

1000

1250

La
te

n
cy

 (
n

s)

Native IF(tpt)
Use Wrapper(tpt)

Native IF(lat)
Use Wrapper(lat)

(b) The performance of PCIe Module.

RandReadRandWrite SeqRead SeqWrite
Access Pattern

0

5

10

15

20

T
hr

ou
gh

tp
ut

 (
G

B
ps

)

0

50

100

150

200

La
te

n
cy

 (
n

s)

Native IF(tpt)
Use Wrapper(tpt)

Native IF(lat)
Use Wrapper(lat)

(c) The performance of DDR Module.

Figure 10. Throughput and latency comparisons of native modules vs. using the interface wrapper.

servers and connect them via the device network interfaces.
The FPGAs directly forward the host’s TCP traffic, measur-
ing end-to-end throughput and latency with varying packet
sizes.

5.2 Micro-benchmarks

Harmonia’s interface wrapper can maintain through-
put and latency. Harmonia provides a lightweight in-
terface wrapper to encapsulate the interface differences of
vendor-specific IPs. To evaluate its performance impact, we
choose three common vendor-specific IPs (MAC [81], PCIe
DMA [71], DDR4 [26]). We compare their native perfor-
mance (using Avalon/AXI) with the performance after in-
terface wrapping. To measure MAC performance, we use
loopback tests by directly connecting the RX and TX QSFP
ports. For PCIe DMA, we post PCIe read requests of dif-
ferent sizes on the host software. Moreover, we perform
both random and sequential read and write operations with
fixed-size data to the DDR. Figure 10a-10c shows the experi-
mental results. Firstly, Harmonia maintains native through-
put for these modules. This is because Harmonia employs a
pipelined processing logic on datapaths (see §3.3.3), ensur-
ing that no bubbles are introduced in the processing, thus
preventing throughput degradation. Secondly, Harmonia in-
troduces minimal latency in PCIe DMA and DDR modules
(only a few cycles). This is due to the necessary timing opti-
mization for multi-channel data width conversion that can
support higher clock frequencies for users [78]. Generally,
the nanosecond-level delays are negligible relative to the
application end-to-end microsecond-level delay.
Harmonia’s shell tailoring can reduce shell resource
consumption and simplify role configurations. The
shell tailoring provides resource-efficient and easy-to-use
shells for different roles. First, we compare the resource con-
sumption of the unified shell designwith the shells tailored to
applications. We deploy applications on device A and their
respective resource consumption is depicted in Figure 11.
The unified shell consumes more resources as it incorporates

all peripheral connectivity and FPGA management func-
tions. In contrast, the tailored application shells achieve a
resource consumption reduction of between 3% and 25.1%.
Furthermore, we analyze the configuration items posed by
the native modules compared to those actually required by
roles, as shown in Figure 12. Harmonia reduces the number
of role configurations by 8.8-19.8×. This is mainly because
vendors usually provide various configurations to cover all
scenarios, while applications only need to focus on a subset
of configurations for cloud scenarios.
Command-based interface reduces ad-hoc software
modifications. The command-based interface reduces the
register-level modifications for host software. We evaluate
the changes made to the Host Network software for initializ-
ing all hardware modules while transitioning from device C
to device D. We compare the register interface used in com-
mercial frameworks with the command-based interface in
Harmonia. Figure 13 shows the experimental results. Harmo-
nia reduces software modifications by 88-107× across appli-
cations. This reduction is mainly because Harmonia provides
a command to abstract control operations and leverages the
unified control kernel to execute them, thereby avoiding
complex register modifications.
5.3 Benefits & Overheads
Harmonia aims to minimize development workloads for plat-
form providers while ensuring native application perfor-
mance with negligible resource overhead.
Harmonia reduces development workloads for shell.
We measure the development workloads of the shell across
different platform configurations, including across chip fam-
ilies (devices A & B) and vendors (devices A & C). To ensure
a fair comparison, we adopt the same programming lan-
guage and developer, measuring the relative proportions of
manually developed versus reusable hardware logic code, fol-
lowing the metrics in previous studies [53, 69, 96]. Figure 14
illustrates the test results. Harmonia achieves RBB reuse rates
from 69% to 76% for cross-vendor configurations and from



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Luyang Li et al.

LUTs REGs BRAM LUT RAM
Resource Type

0%

5%

10%

15%

20%

25%

30%

Pe
rc

en
ta

ge
 o

f R
es

ou
rc

e 
O

cc
up

an
cy

Unified Shell
Layer4-LB Shell

Sec-Gateway Shell
Retrieval Shell

Figure 11. Shell tailoring reduces
resource consumption.

Sec-
Gateway

Layer
-4 LB

Retrie-
val

Board
Test

Host
Network

Applications

101

102

103

N
um

be
r 

of
 C

on
fi

gu
ra

ti
on

 It
em

s

Native Modules Role-oriented

Figure 12. Shell tailoring reduces
module configurations for roles.

Sec-
Gateway

Layer
-4 LB

Retrie-
val

Board
Test

Host
Network

Applications

100

101

102

103

N
um

be
r 

of
 S

of
tw

ar
e 

M
od

if
ic

at
io

ns

Reg Interface Command Interface

Figure 13. Command-based inter-
faces reduce software changes.

Network Host Memory

Reusable Building Blocks

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

 o
f D

ev
el

op
m

en
t W

or
kl

oa
ds

0.76 0.78
0.69

0.91
0.84

0.93

Reuse(Cross-vendor)
Reuse(Cross-chip)

Redev(Cross-vendor)
Redev(Cross-chip)

Figure 14. Harmonia reduces de-
velopment workloads of RBBs
across different vendors and chips.

Sec-
Gateway

Layer
-4 LB

Retrie-
val

Board
Test

Host
Network

Applications

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

ti
on

 o
f D

ev
el

op
m

en
t W

or
kl

oa
ds

0.80 0.78 0.75
0.70

0.75

Reuse (Shell) Redev (Shell)

Figure 15. Harmonia reduces de-
velopment workloads of applica-
tions across different FPGAs.

MAC† PCIe† DMA† DDR† UCK*

Hardware Modules

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

P
er

ce
n

ta
ge

 o
f R

es
ou

rc
e 

U
sa

ge

LUT REG BRAM URAM

Figure 16. The resource overhead
of the interface wrappers† and the
unified control kernel*.

84% to 93% for cross-family configurations. This variation oc-
curs because modules from the same vendor typically share
design similarities, whereas cross-vendor modules have no-
table differences. To address this heterogeneity, Harmonia
offers automated platform adapters and lightweight inter-
face wrappers tomanage hardware configurations. Moreover,
Harmonia proposes RBBs that can abstract similar functional-
ities from vendor-specific IPs to reduce development efforts.
The redevelopment portions are located at the control and
monitor logic, as their implementation often depends on
hardware details. Applications deployed on different plat-
forms also exhibit similar results, showing 70% to 80% shell
reuse across applications (Figure 15). Compared to building
individual shells from scratch, Harmonia can significantly
reduce development workloads for platform providers.
Harmonia introduces minimal resource overheads. To
hide hardware disparities, Harmonia incorporates interface
wrappers and unified control kernels in hardware. We collect
resource usage percentages for those additional hardware
components on different FPGA platforms. Figure 16 displays
the highest resource consumption percentages. Specifically,
Harmonia consumes less than 0.37% of resources in the inter-
face wrapper and less than 0.67% of resources in the unified
control kernel, which indicates negligible consumption com-
pared to the functional modules.

Harmonia maintains the throughput and latency of
FPGA applications. We compare the performance of appli-
cations using Harmonia with those that do not, based on real
workloads in their deployment scenarios. The experimental
results are presented in Figure 17. Firstly, Harmonia achieves
full bandwidth for applications based on the BITW architec-
ture and the desired QPS for applications using the Lookaside
architecture. This is because Harmonia employs full pipeline
designs to ensure lossless data bandwidth. Second, Harmonia
achieves near-native latency with an increase of less than
1%. The slight increase in latency mainly comes from the
data buffering in the interface wrapper. However, the added
delay at the nanosecond level is negligible compared to the
microsecond-level latency in cloud applications.

5.4 Harmonia vs. Other Frameworks
We compare Harmonia with commercial frameworks (Vitis
[86] and oneAPI [65]) and open-source frameworks (Coyote
[47]) that target platform-level abstractions:
Harmonia reduces shell resource consumption. We
deploy frameworks on their respective supported FPGAs.
Specifically, Vitis and Coyote support Device A, oneAPI sup-
ports Device D, and Harmonia provides support across De-
vices A to D. We measure their percentage of shell resource



Harmonia: A Unified Framework for Heterogeneous FPGA Acceleration in the Cloud ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

64 128 256 512 1024
Pkt Size (Bytes)

100

120

140

160

180

200

T
h

ro
u

gh
p

u
t 

(G
b

p
s)

0.0

0.5

1.0

1.5

2.0

2.5

La
te

n
cy

 (
μ

s)

w/o Harmonia(tpt)
w Harmonia(tpt)

w/o Harmonia(lat)
w Harmonia(lat)

(a) Sec-Gateway Performance.

64 128 256 512 1024
Pkt Size (Bytes)

100

120

140

160

180

200

T
h

ro
u

gh
p

u
t (

G
b

p
s)

2.50

2.75

3.00

3.25

3.50

3.75

4.00

La
te

n
cy

 (
μ

s)

w/o Harmonia(tpt)
w Harmonia(tpt)

w/o Harmonia(lat)
w Harmonia(lat)

(b) Layer-4 Lb Performance.

64 128 256 512 1024
Pkt Size (Bytes)

100

120

140

160

180

200

T
h

ro
u

gh
p

u
t 

(G
b

p
s)

4.0

4.5

5.0

5.5

6.0

La
te

n
cy

 (
μ

s)

w/o Harmonia(tpt)
w Harmonia(tpt)

w/o Harmonia(lat)
w Harmonia(lat)

(c) Host Network Performance.

9M 7M 5M 3M 1M
Items of Corpus

0

1

2

3

4

5

T
h

ro
u

gh
p

u
t 

(Q
P

S)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

n
cy

 (
m

s)

w/o Harmonia(tpt)
w Harmonia(tpt)

w/o Harmonia(lat)
w Harmonia(lat)

(d) Retrieval Performance.

Figure 17. The throughput and latency comparison with and without using Harmonia across a range of applications.

LUTs REGs BRAM
Hardware Modules

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

P
er

ce
n

ta
ge

 o
f R

es
ou

rc
e 

U
sa

ge

Vitis
oneAPI

Coyote
Harmonia

(a) Framework Resource Usage.

x4 x8 x16
Degree of Parallelism

0

1K

2K

3K

4K

5K

T
h

ro
u

gh
p

u
t (

M
at

ri
x/

s)

Vitis
oneAPI

Coyote
Harmonia

(b) Matrix Multiplication Perf.

Random Fixed Sequential
Access Mode

0M

50M

100M

150M

200M

250M

T
h

ro
u

gh
p

u
t (

Ve
ct

or
s/

s)

Vitis
oneAPI

Coyote
Harmonia

(c) Database Access Perf.

64B 512B 1500B
Packet Size (Bytes)

0

20

40

60

80

100

T
h

ro
u

gh
p

u
t (

G
b

p
s)

20

22

24

26

28

30

La
te

n
cy

 (
μ

s)

Vitis(tpt)
oneAPI(tpt)
Coyote(tpt)

Harmonia(tpt)
Vitis(lat)
oneAPI(lat)

Coyote(lat)
Harmonia(lat)

(d) TCP Transmission Perf.

Figure 18. The comparison of shell resource usage and benchmark performance of Harmonia with other frameworks.

usage in different benchmarks. As shown in Figure 18a, Har-
monia reduces the shell resource consumption from 3.5%
to 14.9%. This is due to the fine-grained shell tailoring that
removes non-essential modules and functions based on ap-
plication demands. This optimization not only provides more
resources for roles to implement more complex functions
but also helps reduce dynamic power consumption.
Harmonia supports a wider variety of FPGAs. We com-
pare the FPGA devices supported by each framework, as
shown in Table 3. Coyote is compatible with Xilinx Alveo
FPGAs, while Vitis supports a wider range of Xilinx FP-
GAs, including Alveo/Zynq/Versal, etc. OneAPI currently
supports Intel FPGAs such as Agilex and Stratix. However,
cloud providers may select FPGAs from multiple vendors or
deploy custom devices (§2.2). We find that these frameworks
employ a monolithic design for new devices integration, re-
quiring shell redesign. To address this, Harmonia introduces
fine-grained RBBs and integrates platform adapters and in-
terface wrappers to support cross-vendor compatibility.
Harmonia simplifies software configurations across
different platforms. When deploying benchmarks on dif-
ferent platforms, users need to modify the software control
logic to properly configure different hardware modules. We
analyze three typical configurations: monitoring statistics,
network initialization, and host interaction configuration.
We compare these configurations using traditional register

Table 3. FPGA devices supported by each framework.

Device Vitis oneAPI Coyote Harmonia

Intel FPGAs ✗ ✓ ✗ ✓
Xilinx FPGAs ✓ ✗ ✓ ✓

In-house (Custom) FPGAs ✗ ✗ ✗ ✓

Table 4. The command-based interface simplifies hardware
module configuration for host software.

Interface Host Interaction
Config

Monitoring
Statistics

Network
Initialization

Registers 84 115 60
Commands 4 5 4

interfaces and command-based interfaces. The results are
shown in Table 4. Harmonia abstracts control operations
into a series of commands executed by the unified control
kernel in the hardware. This approach simplifies software
configuration by 15-23×, helping to avoid frequent software
modifications when switching platforms.
Harmonia achieves comparable throughput and la-
tency to other frameworks. We compare the benchmark
performance across different frameworks (see §5.1 for the set-
tings), as shown in Figure 18b-18d. For matrix multiplication,
the speed of matrix calculations improves with increased
parallelism through loop unrolling and using more DSPs.
Harmonia achieves consistent throughput relative to other



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Luyang Li et al.

frameworks, as it does not introduce additional overhead in
computational units (e.g., LUT, DSP). On database access, se-
quential access exhibits higher throughput than other access
patterns, and Harmonia achieves comparable vector read-
/write speed. This is due to Harmonia ensuring there are no
bubbles in the memory RBB interface wrappers that guar-
antee lossless bandwidth. Regarding TCP communications,
both throughput and latency increase as packet size grows.
Harmonia performs comparably to other frameworks. As an-
alyzed in §5.3, Harmonia provides native throughput while
the introduced nanosecond-level latency remains negligible
when compared to microsecond-level network latency.

6 Discussion
Multi-tenancywithHarmonia. Harmonia supports multi-
tenancy to enhance the resource utilization of cloud FPGAs.
Specifically, Harmonia utilizes the Ex-function in RBBs to
achieve resource isolation in the shell (§3.3.1), while em-
ploying typical partial reconfiguration techniques [44, 47]
to enable multi-tenancy deployment in the role. Moreover,
Harmonia provides multiple independent queues to isolate
host software belonging to different users.
Benefits for External Users. Harmonia streamlines ap-
plication deployment on heterogeneous FPGAs for various
internal applications. While providing individual shells for
external users is impractical, they can still benefit from Har-
monia in the following ways: (i) they can deploy different
applications on diverse FPGAs supported by Harmonia. (ii)
it is possible to provide module-level tailoring using a few
config interfaces for users. (iii) the command-based interface
simplifies their software development.

7 Related work
FPGA virtualization. FPGA virtualization abstracts vir-
tual FPGAs to enable resource sharing [72, 83]. The overlay
architecture [12, 40, 43, 46, 73] compiles FPGA logic into
an intermediate representation (IR) and then maps it on a
specific FPGA platform. It supports runtime compilation but
decreases resource utilization and performance. To address
these problems, the slot-based method [14, 18, 45, 93, 99, 100]
divides the FPGA into finer-grained slots . ViTAL [99] pro-
poses virtual blocks to enable fine-grained FPGA sharing, and
Hetero-ViTAL [100] further supports heterogeneous FPGAs.
Some work [49, 101] can enhance the productivity. These
works address role’s portability issues but require laborious
shell developments and ad-hoc modifications to software.
FPGA OS abstractions. FPGA operating system (OS) man-
ages FPGA resources and provides basic services for the
upper-layer applications [44, 47, 59, 79, 103]. Some works
provide OS semantics for FPGA platforms, such as virtual
memory [47, 48], time-sharing [31, 52], relocation [42], task
scheduling [33, 47, 92] and context switching [42, 51, 75],

Another studies provide complete OSs[44, 47]. However, the
construction of the OS (shell) still requires laborious work.
Commercial Frameworks. There are many commercial
frameworks that abstract FPGAs at different levels tailored
to different developers. OpenCL [63] and HLS [22] provide
cross-platform programming abstraction to simplify user
logic development. Catapult [70] and AWS F1 [3] provide ho-
mogeneous shell-role platforms while oneAPI[65]/OFS[66]
and Vitis [86] support more FPGAs. Compared with them,
Harmonia further propose a more efficient shell construction
approach and introduce new command-based interfaces to
streamline software development.

8 Conclusion
FPGAs are attractive for cloud applications to boost their per-
formance. The increasing heterogeneity of FPGAs presents
new challenges for applications. We present Harmonia, a
unified framework that abstracts heterogeneous FPGAs and
streamlines the development and configuration of shell, role,
and software. Harmonia’s successful deployment in a large
service provider reduces development workloads with mini-
mal performance impact and negligible resource overhead.
This approach holds promise in enhancing FPGA accessibil-
ity and efficiency in diverse cloud environments.

Acknowledgments
We thank our shepherd Andrew Putnam and all the anony-
mous reviewers for their insightful feedback. This work is
supported in part by National Key R&D Program of China
(Grant No. 2022YFB2901300) and in part by the National
Natural Science Foundation of China (Grant No. 62202447).
Heng Pan and Gaogang Xie are the corresponding authors.

References
[1] Agilex™ FPGA Portfolio. https://www.intel.com/content/www/us/

en/products/details/fpga/agilex.html.
[2] Aliyun. Aliyun ECS F3 Instances. https://www.alibabacloud.com/

help/doc-detail/108504.html.
[3] Amazon EC2 F1 Instances. https://aws.amazon.com/es/ec2/instance-

types/f1/.
[4] AMBA AXI4 Interface Protocol. https://www.xilinx.com/products/

intellectual-property/axi.html.
[5] AMD Alveo™ Adaptable Accelerator Cards. https://www.xilinx.com/

products/boards-and-kits/alveo.html.
[6] AMD Virtex™ UltraScale+™ VU19P FPGAs. https://www.amd.com/

en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus-
vu19p.html#portfolio.

[7] AMD Zynq™ 7000 SoCs. https://www.amd.com/en/products/
adaptive-socs-and-fpgas/soc/zynq-7000.html.

[8] Krste Asanović and David A Patterson. Instruction sets should be
free: The case for risc-v. EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2014-146, 2014.

[9] Avalon® Interface Specifications. https://www.intel.com/content/
www/us/en/docs/programmable/683091/20-1/introduction-to-the-
interface-specifications.html.

https://www.intel.com/content/www/us/en/products/details/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex.html
https://www.alibabacloud.com/help/doc-detail/108504.html
https://www.alibabacloud.com/help/doc-detail/108504.html
https://aws.amazon.com/es/ec2/instance-types/f1/
https://aws.amazon.com/es/ec2/instance-types/f1/
https://www.xilinx.com/products/intellectual-property/axi.html
https://www.xilinx.com/products/intellectual-property/axi.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus-vu19p.html#portfolio
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus-vu19p.html#portfolio
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus-vu19p.html#portfolio
https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/introduction-to-the-interface-specifications.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/introduction-to-the-interface-specifications.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/20-1/introduction-to-the-interface-specifications.html


Harmonia: A Unified Framework for Heterogeneous FPGA Acceleration in the Cloud ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[10] Matěj Bartík, Sven Ubik, and Pavel Kubalik. Lz4 compression algo-
rithm on fpga. In 2015 IEEE International Conference on Electronics,
Circuits, and Systems (ICECS), pages 179–182. IEEE, 2015.

[11] Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Moham-
mad Ewais, Naif Tarafdar, Juan Camilo Vega, Ken Eguro, Dirk Koch,
Suranga Handagala, Miriam Leeser, et al. The future of fpga accelera-
tion in datacenters and the cloud. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 15(3):1–42, 2022.

[12] Alexander Brant and Guy GF Lemieux. Zuma: An open fpga overlay
architecture. In 2012 IEEE 20th international symposium on field-
programmable custom computing machines, pages 93–96. IEEE, 2012.

[13] Ravi Budruk, Don Anderson, and Tom Shanley. PCI express system
architecture. Addison-Wesley Professional, 2004.

[14] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Alberto Leon-
Garcia, and Paul Chow. Fpgas in the cloud: Booting virtualized
hardware accelerators with openstack. In 2014 IEEE 22nd Annual
International Symposium on Field-Programmable Custom Computing
Machines, pages 109–116. IEEE, 2014.

[15] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu,
Linqiang Ouyang, Peng Wang, Yijing Wang, Ray Kuan, et al. PO-
LARDB meets computational storage: Efficiently support analytical
workloads in Cloud-Native relational database. In 18th USENIX Con-
ference on File and Storage Technologies (FAST 20), pages 29–41, 2020.

[16] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, et al. A cloud-scale acceleration archi-
tecture. In 2016 49th Annual IEEE/ACM international symposium on
microarchitecture (MICRO), pages 1–13. IEEE, 2016.

[17] Vinton Cerf and Robert Kahn. A protocol for packet network inter-
communication. IEEE Transactions on communications, 22(5):637–648,
1974.

[18] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao
Chang, and Kun Wang. Enabling fpgas in the cloud. In Proceedings of
the 11th ACM Conference on Computing Frontiers, pages 1–10, 2014.

[19] Jian Chen, Xiaoyu Zhang, Tao Wang, Ying Zhang, Tao Chen, Jiajun
Chen, Mingxu Xie, and Qiang Liu. Fidas: Fortifying the cloud via com-
prehensive fpga-based offloading for intrusion detection: industrial
product. In Proceedings of the 49th Annual International Symposium
on Computer Architecture, pages 1029–1041, 2022.

[20] Hsin-Chieh Chiang, Yuan-Pang Dai, and Chuei-Yu Wang. Full hard-
ware based tcp/ip traffic offload engine (toe) device and the method
thereof, January 12 2010. US Patent 7,647,416.

[21] Sean Choi, Muhammad Shahbaz, Balaji Prabhakar, andMendel Rosen-
blum. 𝜆-nic: Interactive serverless compute on programmable smart-
nics. In 2020 IEEE 40th International Conference on Distributed Com-
puting Systems (ICDCS), pages 67–77. IEEE, 2020.

[22] Philippe Coussy and Adam Morawiec. High-level synthesis, volume 1.
Springer, 2010.

[23] Clifford E Cummings. Simulation and synthesis techniques for asyn-
chronous fifo design. In SNUG 2002 (Synopsys Users Group Conference,
San Jose, CA, 2002) User Papers, volume 281. Citeseer, 2002.

[24] Database Access. https://github.com/Xilinx/Vitis_Libraries/tree/
main/database.

[25] Shail Dave, Tony Nowatzki, and Aviral Shrivastava. Explainable-dse:
An agile and explainable exploration of efficient hw/sw codesigns of
deep learning accelerators using bottleneck analysis. In Proceedings
of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 4, pages
87–107, 2023.

[26] DDR4 Controller. https://www.xilinx.com/products/intellectual-
property/ddr4.html.

[27] Christophe Diot, Brian Neil Levine, Bryan Lyles, Hassan Kassem, and
Doug Balensiefen. Deployment issues for the ip multicast service
and architecture. IEEE network, 14(1):78–88, 2000.

[28] Giuliano Donzellini and Domenico Ponta. A bottom-up approach
to digital design with fpga. In 2011 IEEE International Conference on
Microelectronic Systems Education, pages 31–34. IEEE, 2011.

[29] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney,
Wentao Shang, and Jinnah Dylan Hosein. Maglev: A fast and reliable
software network load balancer. In Nsdi, volume 16, pages 523–535,
2016.

[30] Ethernet SubSystems 10G/25G/40G/50G/100G/200G/400G. https://
adaptivesupport.amd.com/s/article/71820?language=en_US.

[31] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. Virtualized
fpga accelerators for efficient cloud computing. In 2015 IEEE 7th
International Conference on Cloud Computing Technology and Science
(CloudCom), pages 430–435. IEEE, 2015.

[32] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek
Chiou, Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek
Bhanu, Adrian Caulfield, Eric Chung, et al. Azure accelerated net-
working:SmartNICs in the public cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18), pages
51–66, 2018.

[33] Wenyin Fu and Katherine Compton. Scheduling intervals for re-
configurable computing. In 2008 16th International Symposium on
Field-Programmable Custom Computing Machines, pages 87–96. IEEE,
2008.

[34] Intel. Intel® FPGAs and Programmable Solutions. https://www.intel.
com/content/www/us/en/products/programmable.html.

[35] Intel Quartus Prime. https://www.intel.com/content/www/us/en/
products/details/fpga/development-tools/quartus-prime.html.

[36] Intel® Arria® 10 FPGA and SoC FPGA. https://www.intel.com/
content/www/us/en/products/details/fpga/arria/10.html.

[37] Intel® FPGA IP for PCIe. https://www.intel.com/content/www/
us/en/products/details/fpga/intellectual-property/interface-
protocols/pci-express-protocol.html.

[38] Intel® Stratix® Series FPGAs and SoCs. https://www.intel.com/
content/www/us/en/products/details/fpga/stratix.html, 2013.

[39] IP-XACT. https://www.accellera.org/downloads/standards/ip-xact.
[40] Abhishek Kumar Jain, Suhaib A Fahmy, and Douglas L Maskell. Ef-

ficient overlay architecture based on dsp blocks. In 2015 IEEE 23rd
Annual International Symposium on Field-Programmable Custom Com-
puting Machines, pages 25–28. IEEE, 2015.

[41] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook
Kim, Hanho Jin, and Keith Kim. Hbm (high bandwidth memory)
dram technology and architecture. In 2017 IEEE International Memory
Workshop (IMW), pages 1–4. IEEE, 2017.

[42] Heiko Kalte and Mario Porrmann. Context saving and restoring for
multitasking in reconfigurable systems. In International Conference
on Field Programmable Logic and Applications, 2005., pages 223–228.
IEEE, 2005.

[43] Nachiket Kapre and Jan Gray. Hoplite: Building austere overlay nocs
for fpgas. In 2015 25th international conference on field programmable
logic and applications (FPL), pages 1–8. IEEE, 2015.

[44] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei,
Eric Schkufza, and Christopher J Rossbach. Sharing, protection, and
compatibility for reconfigurable fabric with AmorphOS. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 107–127, 2018.

[45] Oliver Knodel and Rainer G Spallek. Rc3e: provision and manage-
ment of reconfigurable hardware accelerators in a cloud environment.
arXiv preprint arXiv:1508.06843, 2015.

[46] Dirk Koch, Christian Beckhoff, and GuyGF Lemieux. An efficient fpga
overlay for portable custom instruction set extensions. In 2013 23rd
international conference on field programmable logic and applications,
pages 1–8. IEEE, 2013.

[47] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. Do OS abstrac-
tions make sense on FPGAs? In 14th USENIX Symposium on Operating

https://github.com/Xilinx/Vitis_Libraries/tree/main/database
https://github.com/Xilinx/Vitis_Libraries/tree/main/database
https://www.xilinx.com/products/intellectual-property/ddr4.html
https://www.xilinx.com/products/intellectual-property/ddr4.html
https://adaptivesupport.amd.com/s/article/71820?language=en_US
https://adaptivesupport.amd.com/s/article/71820?language=en_US
https://www.intel.com/content/www/us/en/products/programmable.html
https://www.intel.com/content/www/us/en/products/programmable.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/pci-express-protocol.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/pci-express-protocol.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/pci-express-protocol.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix.html
https://www.accellera.org/downloads/standards/ip-xact


ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Luyang Li et al.

Systems Design and Implementation (OSDI 20), pages 991–1010, 2020.
[48] Joshua Landgraf, Matthew Giordano, Esther Yoon, and Christopher J

Rossbach. Reconfigurable virtual memory for fpga-driven i/o. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3, pages 556–571, 2023.

[49] Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J Rossbach, and
Eric Schkufza. Compiler-driven fpga virtualization with synergy. In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
818–831, 2021.

[50] Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoor-
thy, Xiaodong Zhao, and Yang Seok Ki. Smartssd: Fpga accelerated
near-storage data analytics on ssd. IEEE Computer architecture letters,
19(2):110–113, 2020.

[51] Trong-Yen Lee, Che-Cheng Hu, Li-Wen Lai, and Chia-Chun Tsai.
Hardware context-switch methodology for dynamically partially re-
configurable systems. Journal of Information Science and Engineering,
26(4):1289–1305, 2010.

[52] Lorne Levinson, R Manner, Matthias Sessler, and Harald Simmler.
Preemptive multitasking on fpgas. In Proceedings 2000 IEEE Sympo-
sium on Field-Programmable Custom Computing Machines (Cat. No.
PR00871), pages 301–302. IEEE, 2000.

[53] Bojie Li, Kun Tan, Layong Luo, Yanqing Peng, Renqian Luo, Ningyi
Xu, Yongqiang Xiong, Peng Cheng, and Enhong Chen. Clicknp:
Highly flexible and high performance network processing with re-
configurable hardware. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 1–14, 2016.

[54] Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xiaoyi Zeng, Xiao-
Ming Wu, and Qianli Ma. Embedding-based product retrieval in
taobao search. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pages 3181–3189, 2021.

[55] Sheng Li, Hyeontaek Lim, Victor W Lee, Jung Ho Ahn, Anuj Kalia,
Michael Kaminsky, David G Andersen, O Seongil, Sukhan Lee, and
Pradeep Dubey. Architecting to achieve a billion requests per second
throughput on a single key-value store server platform. In Proceedings
of the 42nd Annual International Symposium on Computer Architecture,
pages 476–488, 2015.

[56] Shuangchen Li, Dimin Niu, Yuhao Wang, Wei Han, Zhe Zhang, Tian-
chan Guan, Yijin Guan, Heng Liu, Linyong Huang, Zhaoyang Du,
et al. Hyperscale fpga-as-a-service architecture for large-scale dis-
tributed graph neural network. In Proceedings of the 49th Annual
International Symposium on Computer Architecture, pages 946–961,
2022.

[57] Jiaxin Lin, Kiran Patel, Brent E Stephens, Anirudh Sivaraman, and
Aditya Akella. Panic: A high-performance programmable nic for
multi-tenant networks. In Proceedings of the 14th USENIX Conference
on Operating Systems Design and Implementation, pages 243–259,
2020.

[58] Linux Kernel. https://www.kernel.org/.
[59] Enno Lübbers and Marco Platzner. Reconos: Multithreaded program-

ming for reconfigurable computers. ACM Transactions on Embedded
Computing Systems (TECS), 9(1):1–33, 2009.

[60] Matrix Multiply. https://github.com/oneapi-src/oneAPI-
samples/tree/master/DirectProgramming/C++SYCL_FPGA/
ReferenceDesigns/matmul.

[61] Memory-Mapped Interfaces. https://www.intel.com/content/
www/us/en/docs/programmable/683364/18-1/memory-mapped-
interfaces.html.

[62] Microsoft Azure. https://azure.microsoft.com/.
[63] Aaftab Munshi. The opencl specification. In 2009 IEEE Hot Chips 21

Symposium (HCS), pages 1–314. IEEE, 2009.
[64] Nios® Soft Processor Ser. https://www.intel.com/content/www/us/

en/products/details/fpga/nios-processor.html.

[65] oneAPI: A New Era of Heterogeneous Computing. https://www.intel.
com/content/www/us/en/developer/tools/oneapi/overview.html,
2024.

[66] Open FPGA Stack Overview. https://ofs.github.io/ofs-2024.2-1/, 2024.
[67] Heng Pan, Peng He, Zhenyu Li, Pan Zhang, Junjie Wan, Yuhao

Zhou, XiongChun Duan, Yu Zhang, and Gaogang Xie. Hoda: a high-
performance open vswitch dataplane with multiple specialized data
paths. In Proceedings of the Nineteenth European Conference on Com-
puter Systems, pages 82–98, 2024.

[68] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert
Greenberg, David A Maltz, Randy Kern, Hemant Kumar, Marios
Zikos, Hongyu Wu, et al. Ananta: Cloud scale load balancing. ACM
SIGCOMM Computer Communication Review, 43(4):207–218, 2013.

[69] Oscar E Perez-Cham, Carlos Soubervielle-Montalvo, Alberto S Nunez-
Varela, Cesar Puente, and Luis J Ontanon-Garcia. Source code metrics
to predict the properties of fpga/vhdl-based synthesized products. In
2018 6th International Conference in Software Engineering Research
and Innovation (CONISOFT), pages 93–98. IEEE, 2018.

[70] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy
Fowers, Gopi Prashanth Gopal, Jan Gray, et al. A reconfigurable fabric
for accelerating large-scale datacenter services. In 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), pages
13–24. IEEE, 2014.

[71] QDMA Subsystem for PCI Express. https://www.xilinx.com/products/
intellectual-property/pcie-qdma.html.

[72] Masudul Hassan Quraishi, Erfan Bank Tavakoli, and Fengbo Ren. A
survey of system architectures and techniques for fpga virtualization.
IEEE Transactions on Parallel and Distributed Systems, 32(9):2216–2230,
2021.

[73] Rafat Rashid, J Gregory Steffan, and Vaughn Betz. Comparing per-
formance, productivity and scalability of the tilt overlay processor to
opencl hls. In 2014 International Conference on Field-Programmable
Technology (FPT), pages 20–27. IEEE, 2014.

[74] Ruby, A PROGRAMMER’S BEST FRIEND. https://www.ruby-lang.
org/en/documentation/, 2024.

[75] Kyle Rupnow, Wenyin Fu, and Katherine Compton. Block, drop or
roll (back): Alternative preemption methods for rh multi-tasking. In
2009 17th IEEE Symposium on Field Programmable Custom Computing
Machines, pages 63–70. IEEE, 2009.

[76] Wongyu Shin, Jaemin Jang, Jungwhan Choi, Jinwoong Suh, and Lee-
Sup Kim. Bank-group level parallelism. IEEE Transactions on Com-
puters, 66(8):1428–1434, 2017.

[77] David Sidler, Zsolt István, Muhsen Owaida, Kaan Kara, and Gustavo
Alonso. doppiodb: A hardware accelerated database. In Proceedings
of the 2017 ACM International Conference on Management of Data,
pages 1659–1662, 2017.

[78] Kanwar Jit Singh, Albert R Wang, Robert K Brayton, and Alberto
Sangiovanni-Vincentelli. Timing optimization of combinational logic.
In 1988 IEEE International Conference on Computer-Aided Design,
pages 282–283. IEEE Computer Society, 1988.

[79] Hayden Kwok-Hay So. Borph: An operating system for fpga-based
reconfigurable computers. University of California, Berkeley, 2007.

[80] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty,
Yufei Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-
optimized opencl-based fpga accelerator for large-scale convolutional
neural networks. In Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 16–25, 2016.

[81] UltraScale+ Integrated 100G Ethernet. https://www.xilinx.com/
products/intellectual-property/cmac_usplus.html.

[82] Kohei Umeta, Taketsugu Sawamura, Yuki Shiroishi, and Hideyuki
Nasu. Characterization of qsfp and osfp cpo els modules employing
an 8-channel cwdm tosa in practical air-cooling conditions. In 2024
IEEE 74th Electronic Components and Technology Conference (ECTC),
pages 112–117. IEEE, 2024.

https://www.kernel.org/
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C++SYCL_FPGA/ReferenceDesigns/matmul
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C++SYCL_FPGA/ReferenceDesigns/matmul
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C++SYCL_FPGA/ReferenceDesigns/matmul
https://www.intel.com/content/www/us/en/docs/programmable/683364/18-1/memory-mapped-interfaces.html
https://www.intel.com/content/www/us/en/docs/programmable/683364/18-1/memory-mapped-interfaces.html
https://www.intel.com/content/www/us/en/docs/programmable/683364/18-1/memory-mapped-interfaces.html
https://azure.microsoft.com/
https://www.intel.com/content/www/us/en/products/details/fpga/nios-processor.html
https://www.intel.com/content/www/us/en/products/details/fpga/nios-processor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://ofs.github.io/ofs-2024.2-1/
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
https://www.xilinx.com/products/intellectual-property/pcie-qdma.html
https://www.ruby-lang.org/en/documentation/
https://www.ruby-lang.org/en/documentation/
https://www.xilinx.com/products/intellectual-property/cmac_usplus.html
https://www.xilinx.com/products/intellectual-property/cmac_usplus.html


Harmonia: A Unified Framework for Heterogeneous FPGA Acceleration in the Cloud ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[83] Anuj Vaishnav, Khoa Dang Pham, and Dirk Koch. A survey on
fpga virtualization. In 2018 28th International Conference on Field
Programmable Logic and Applications (FPL), pages 131–1317. IEEE,
2018.

[84] Virtex™ UltraScale+™ FPGAs. https://www.amd.com/en/products/
adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html.

[85] Virtex™ UltraScale™ FPGAs. https://www.amd.com/en/products/
adaptive-socs-and-fpgas/fpga/virtex-ultrascale.html.

[86] Vitis Unified Software Platform. https://www.xilinx.com/products/
design-tools/vitis.html.

[87] Vivado Design Suite Tcl Command Reference Guide. https://docs.
amd.com/r/en-US/ug835-vivado-tcl-commands, 2024.

[88] Vivado Design Suite Tutorial. https://www.xilinx.com/developer/
products/vivado.html.

[89] Vivado Design Suite Tutorial. https://www.intel.com/content/www/
us/en/docs/programmable/683091/22-3/introduction-to-memory-
mapped-interfaces.html.

[90] Tao Wang, Xiangrui Yang, Gianni Antichi, Anirudh Sivaraman,
and Aurojit Panda. Isolation mechanisms for High-Speed Packet-
Processing pipelines. In 19th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 22), pages 1289–1305, 2022.

[91] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue
Li, Xinchen Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng, et al.
SRNIC: A scalable architecture for RDMA NICs. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23), pages 1–14, 2023.

[92] Guy Wassi, Mohamed El Amine Benkhelifa, Geoff Lawday, Francois
Verdier, and Samuel Garcia. Multi-shape tasks scheduling for online
multitasking on fpgas. In 2014 9th International Symposium on Re-
configurable and Communication-Centric Systems-on-Chip (ReCoSoC),
pages 1–7. IEEE, 2014.

[93] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and An-
dreas Herkersdorf. Enabling fpgas in hyperscale data centers. In 2015
IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015
IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015
IEEE 15th Intl Conf on Scalable Computing and Communications and
Its Associated Workshops (UIC-ATC-ScalCom), pages 1078–1086. IEEE,
2015.

[94] YuhongWen, Xiaogang Zhao, You Zhou, Tong Zhang, Shangjun Yang,
Changsheng Xie, and Fei Wu. Eliminating storage management over-
head of deduplication over ssd arrays through a hardware/software
co-design. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, pages 320–335, 2024.

[95] Memory Mapped Interfaces. https://docs.amd.com/r/en-US/ug1399-
vitis-hls/Memory-Mapped-Interfaces.

[96] Wenquan Xu, Zijian Zhang, Yong Feng, Haoyu Song, Zhikang Chen,
Wenfei Wu, Guyue Liu, Yinchao Zhang, Shuxin Liu, Zerui Tian, et al.
Clickinc: In-network computing as a service in heterogeneous pro-
grammable data-center networks. In Proceedings of the ACM SIG-
COMM 2023 Conference, pages 798–815, 2023.

[97] Chaoliang Zeng, Layong Luo, Qingsong Ning, Yaodong Han, Yuhang
Jiang, Ding Tang, Zilong Wang, Kai Chen, and Chuanxiong Guo.
FAERY: An FPGA-accelerated embedding-based retrieval system. In
16th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 22), pages 841–856, 2022.

[98] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong Wang, Luyang Li,
WenchenHan, NanChen, LebingWan, Lichao Liu, ZhipengDing, et al.
Tiara: A scalable and efficient hardware acceleration architecture
for stateful layer-4 load balancing. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22), pages 1345–
1358, 2022.

[99] Yue Zha and Jing Li. Virtualizing fpgas in the cloud. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 845–858,
2020.

[100] Yue Zha and Jing Li. Hetero-vital: A virtualization stack for hetero-
geneous fpga clusters. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pages 470–483. IEEE,
2021.

[101] Yue Zha and Jing Li. When application-specific isa meets fpgas: a
multi-layer virtualization framework for heterogeneous cloud fpgas.
In Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 123–134, 2021.

[102] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong. Optimizing fpga-based accelerator design for deep con-
volutional neural networks. In Proceedings of the 2015 ACM/SIGDA
international symposium on field-programmable gate arrays, pages
161–170, 2015.

[103] Jiansong Zhang, Yongqiang Xiong, Ningyi Xu, Ran Shu, Bojie Li,
Peng Cheng, Guo Chen, and Thomas Moscibroda. The feniks fpga
operating system for cloud computing. In Proceedings of the 8th
Asia-Pacific Workshop on Systems, pages 1–7, 2017.

[104] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu, Nanlong Yu,
Gui Huang, Tieying Zhang, Dengcheng He, Feifei Li, Wei Cao, et al.
FPGA-Accelerated compactions for LSM-basedKey-Value store. In
18th USENIX Conference on File and Storage Technologies (FAST 20),
pages 225–237, 2020.

[105] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C Hoe, Vyas Sekar, and
Justine Sherry. Achieving 100gbps intrusion prevention on a single
server. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 1083–1100, 2020.

https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale.html
https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/vitis.html
https://docs.amd.com/r/en-US/ug835-vivado-tcl-commands
https://docs.amd.com/r/en-US/ug835-vivado-tcl-commands
https://www.xilinx.com/developer/products/vivado.html
https://www.xilinx.com/developer/products/vivado.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/22-3/introduction-to-memory-mapped-interfaces.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/22-3/introduction-to-memory-mapped-interfaces.html
https://www.intel.com/content/www/us/en/docs/programmable/683091/22-3/introduction-to-memory-mapped-interfaces.html
https://docs.amd.com/r/en-US/ug1399-vitis-hls/Memory-Mapped-Interfaces
https://docs.amd.com/r/en-US/ug1399-vitis-hls/Memory-Mapped-Interfaces

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Cloud FPGA Acceleration Overview
	2.2 Increasing Heterogeneity of Cloud FPGAs
	2.3 Prior Works & Limitations

	3 Harmonia Design
	3.1 Framework Overview
	3.2 Platform-specific Layer
	3.3 Platform-independent Layer

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Micro-benchmarks
	5.3 Benefits & Overheads
	5.4 Harmonia vs. Other Frameworks

	6 Discussion
	7 Related work
	8 Conclusion
	References

